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1. Introduction 

The increasing complexity of engineering systems has driven the need for accurate 
yet inexpensive tools to explore and predict a potentially wide range of operational 
conditions and device geometries. In recent years, data-driven approaches have 
gained increasing attention within the computational science and engineering 
communities, particularly when traditional numerical and experimental tools prove 
insufficient for tasks like design exploration, optimization, or providing real-time 
predictions. These limitations often arise from the need for numerous model 
evaluations, making conventional methods inefficient or impractical.  

The design of complex systems is an iterative process that requires a certain number 
of model evaluations and exploring “what if” scenarios. As such, it cannot rely solely 
on high-fidelity tools, admitting that they are available for the scale of interest. A 
combination of approaches is needed to bridge information from high and low-
fidelity models into a reduced representation of a complex asset.  

The concept of multi-fidelity modeling has gained considerable attention within the 
scientific community, as it allows the use of many inexpensive and simple, yet 
potentially inaccurate, low-fidelity observations or simulations while enhancing their 
accuracy by integrating a smaller set of expensive but accurate high-fidelity data. 
These models enable substantial computational gains and provide accurate 
predictions by leveraging the cross-correlations between the low- and high-fidelity 
data through machine learning techniques for problems that would be nearly 
impossible to solve if one relied solely on the expensive high-fidelity data. 

In the literature, simulations are predominantly employed as sources of low- and high-
fidelity data. In this context, it is possible to obtain different levels of fidelity by varying 
the physical model, the size of the computational grid, the computational time step, 
the convergence level of the simulations, and/or combining numerical data with 
experimental results [1]. Often, multiple types of low-fidelity models exist for a high-
fidelity model, including coarse-grid approximations, projection-based reduced 
models, data-fitting interpolation and regression models, machine learning-based 
models, and simplified models. These low-fidelity models differ in terms of error and 
cost. 

2. Methodology 

In a multi-fidelity framework, although both low- and high-fidelity datasets represent 
the same problem, differences in fidelity present challenges for knowledge transfer 
between them. However, the assumption that both datasets share a common low-
dimensional latent manifold due to their inherent similarities enables comparison of 
the embedded data. Besides allowing the comparison of low- and high-fidelity 
datasets, working in a lower dimensional space allows filtering noise and makes the 
model more general, as the focus is on the relevant features controlling its behavior 
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and evolution. Moreover, when the problem dimensionality becomes very large, 
dimensionality reduction allows us to tackle the so-called curse of dimensionality by 
focusing on a smaller number of features. 

2.1. Dimensionality Reduction 

Dimensionality reduction techniques are widely used across different disciplines. The 
most popular dimensionality reduction technique, Proper Orthogonal Decomposition 
(POD), also known as Principal Component Analysis (PCA) [2], identifies linear 
combinations of the variables of interest in state space and captures the most 
significant patterns and variations in the dataset. POD and PCA are multi-linear 
dimensionality reduction techniques, and, as such, they can become underoptimal 
for data showing strong non-linearities. In this case, non-linear dimensionality 
reduction techniques are preferred. The latter can be broadly classified into two 
categories: (1) autoencoders and (2) manifold learning methods [3]. Autoencoders 
aim to find a compressed representation of the data while retaining as much 
information as possible. POD can be viewed as a linear autoencoder, while classic 
examples of non-linear autoencoders include Artificial Neural Networks (ANN) [4,5] 
and kernel PCA [6,7]. On the other hand, manifold learning methods seek to discover 
low-dimensional representations that preserve a certain measure of similarity within 
the data without focusing on the loss of information during reconstruction [8]. 
Prominent techniques in this category include Locally Linear Embedding (LLE) 
[9,10,11], ISOMAPs [12,13], and spectral submanifolds [14]. 

2.2 Manifold Alignment 

If low- and high-fidelity data are available and latent spaces are explored for both, 
the latter will likely be different, and suitable approaches should be developed to 
assess their difference. Characterizing the discrepancy between the latent space is 
key to model correction terms that can be used to increase the fidelity of a low-fidelity 
model. For that purpose, manifold alignment [15,16] represents a very appealing 
technique to identify this shared latent space, facilitating effective information transfer 
between the datasets. Wang and Mahadevan [16] describe two types of manifold 
alignment techniques. The first approach involves finding the intrinsic low-
dimensional latent space for each dataset using any dimensionality reduction 
method, followed by aligning these latent manifolds through Procrustes analysis of 
the embedded data. The second approach identifies a shared latent space by 
constructing a joint graph Laplacian, aiming to preserve both individual and shared 
features of the datasets simultaneously within the resulting aligned latent space [17]. 
Manifold alignment techniques have been utilized in a variety of transfer learning 
problems such as protein alignment [18], image matching [15], magnetic resonance 
image classification [19], hyperspectral imaging visualization [20], automatic machine 
translation [21], etc. 
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2.3 Regression 

Modeling the discrepancy between low- and high-fidelity data can be handled with 
regression models. This allows the correction of the predictions from a low-fidelity 
model at conditions not present in the original training data, allowing for exploring 
the design space. In multi-fidelity reduced-order modeling, the regression model 
combines values from different fidelities at observed locations to predict one variable, 
meaning the regression model must incorporate a multi-fidelity formulation. Common 
methods used in multi-fidelity frameworks include bridge functions with either 
multiplicative [22] or additive corrections [23,24], ANNs [25], as well as CoKriging 
[26,27,28] and Hierarchical Kriging [29], which offers accuracy comparable to 
CoKriging but with the advantage of being relatively simpler to implement [17]. Both 
CoKriging and Hierarchical Kriging are extensions of Kriging, also known as the 
Gaussian Process Regression (GPR) [30], which is a very popular technique to predict 
a distribution over possible values, which includes a mean value and a measure of 
uncertainty for a given input. The CoKriging and Hierarchical Kriging techniques 
found in the literature adapt the autoregressive model of Kennedy and O'Hagan [26]. 
This Markov property indicates that for the same training point, if high-fidelity 
information is available, low-fidelity data cannot improve prediction accuracy. An 
example of CoKriging is shown in Figure 1 using the toy datasets provided in [31]. 
The autoregressive characteristic is evident from the fact that the mean prediction 
passes through the high-fidelity samples with zero uncertainty at those locations. 

 
Figure 1 - Example of CoKriging regression [32]. The autoregressive characteristic is shown by mean 

prediction passing through the high-fidelity samples with zero uncertainty at those locations. 
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3. Multi-Fidelity Applications 

Multi-fidelity frameworks have been applied across various scientific disciplines, as 
illustrated by recent literature. Yang et al. [33] proposed a multi-fidelity reduced-order 
model and global optimization method for the rapid and accurate simulation and 
design of microfluidic concentration gradient generators. Perron et al. [34] utilized a 
multi-fidelity framework to study high-dimensional displacement and stress fields 
from a structural analysis involving differences in discretization size and structural 
topology. Liu et al. [35] performed a hull form optimization process for resistance and 
wake performance of a Japan bulk carrier (JBC) by using a multi-fidelity Co-Kriging 
surrogate model. Nony et al. [36] evaluated atmospheric flow dispersion by 
integrating Large Eddy Simulations (LES) with Reynolds Averaged Navier Stokes with 
transport equation (RANS-TE) in a multi-fidelity framework. Demo et al. [25] 
successfully combined the DeepONet architecture with POD and gappy POD for 
sensor data, testing their approach on a parametric benchmark function and a 
nonlinear parametric Navier-Stokes problem. Guo et al. [37] developed a multi-
fidelity Gaussian process, inspired by hierarchical Kriging, to model flame frequency 
response, combining data from harmonic and broadband forcing. 

Tong et al. [38] studied the combustion performance of an aero-engine combustion 
chamber with a POD-Hierarchical Kriging multi-fidelity framework. Özden et al. 
[39,40] were the first to propose this method to build a multi-fidelity digital shadow 
of a methane-hydrogen and ammonia combustion performances in a semi-industrial 
furnace and a stagnation point reverse flow combustion. The proposed framework for 
multi-fidelity digital-twin development is summarised in Figure 2.  

 

 
Figure 2 – Strategy for multi-fidelity digital twin development. 

 

The impact of the high-fidelity simulations on the overall error associated with the 
multi-fidelity reduced-order model (ROM) is shown in Figure 3. 
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Figure 3 - 30-fold statistics of the NRMS error with increasing HiFi samples employing 
an uncertainty-based strategy for the selection of the HiFi simulations [39]. 

The selection of an optimal number of high-fidelity simulations to balance accuracy 
and training cost is key when building the multi-fidelity ROM. In [39], incremental 
sampling strategies based on the variance of the co-kriging model were developed 
to introduce high-fidelity simulations where the gain in terms of uncertainty reduction 
was higher. Figure 3 demonstrates that around half of the training cost can be saved 
while maintaining comparable error values with an appropriate choice of high-fidelity 
simulations. 

Figure 4 shows the comparison of the OH radical (flame marker) obtained with the 
full CFD simulation (left) and the multi-fidelity ROM prediction using 41 low-fidelity 
simulations with (a) 9 and (b) 27 high-fidelity simulations. The OH field topology 
improves with additional HiFi simulations, reaching a satisfying flame location and 
peak OH value with 27 high-fidelity simulations (out of 41). 
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Figure 4 – Comparison of the full CFD simulation (left) and the multi-fidelity ROM prediction using 41 

low-fidelity simulations with (a) 9 and (b) 27 high-fidelity simulations [39]. 

 

4. Conclusion 

The proposed multi-fidelity framework relying on dimensionality reduction and non-
linear regression is effective in building digital shadows of complex combustion 
systems. The combination of low- and high-fidelity data holds promise to reduce the 
computational cost associated with the generation of the numerical simulations 
required to generate the ROM. Future efforts from the working group members will 
focus on strategies to update the ROM in time, to adapt to changes in boundary and 
operating conditions.  
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