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1. Introduction

The increasing complexity of engineering systems has driven the need for accurate
yet inexpensive tools to explore and predict a potentially wide range of operational
conditions and device geometries. In recent years, data-driven approaches have
gained increasing attention within the computational science and engineering
communities, particularly when traditional numerical and experimental tools prove
insufficient for tasks like design exploration, optimization, or providing real-time
predictions. These limitations often arise from the need for numerous model
evaluations, making conventional methods inefficient or impractical.

The design of complex systems is an iterative process that requires a certain number
of model evaluations and exploring “what if” scenarios. As such, it cannot rely solely
on high-fidelity tools, admitting that they are available for the scale of interest. A
combination of approaches is needed to bridge information from high and low-
fidelity models into a reduced representation of a complex asset.

The concept of multi-fidelity modeling has gained considerable attention within the
scientific community, as it allows the use of many inexpensive and simple, yet
potentially inaccurate, low-fidelity observations or simulations while enhancing their
accuracy by integrating a smaller set of expensive but accurate high-fidelity data.
These models enable substantial computational gains and provide accurate
predictions by leveraging the cross-correlations between the low- and high-fidelity
data through machine learning techniques for problems that would be nearly
impossible to solve if one relied solely on the expensive high-fidelity data.

In the literature, simulations are predominantly employed as sources of low- and high-
fidelity data. In this context, it is possible to obtain different levels of fidelity by varying
the physical model, the size of the computational grid, the computational time step,
the convergence level of the simulations, and/or combining numerical data with
experimental results [1]. Often, multiple types of low-fidelity models exist for a high-
fidelity model, including coarse-grid approximations, projection-based reduced
models, data-fitting interpolation and regression models, machine learning-based
models, and simplified models. These low-fidelity models differ in terms of error and
cost.

2. Methodology

In a multi-fidelity framework, although both low- and high-fidelity datasets represent
the same problem, differences in fidelity present challenges for knowledge transfer
between them. However, the assumption that both datasets share a common low-
dimensional latent manifold due to their inherent similarities enables comparison of
the embedded data. Besides allowing the comparison of low- and high-fidelity
datasets, working in a lower dimensional space allows filtering noise and makes the
model more general, as the focus is on the relevant features controlling its behavior
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and evolution. Moreover, when the problem dimensionality becomes very large,
dimensionality reduction allows us to tackle the so-called curse of dimensionality by
focusing on a smaller number of features.

2.1. Dimensionality Reduction

Dimensionality reduction techniques are widely used across different disciplines. The
most popular dimensionality reduction technique, Proper Orthogonal Decomposition
(POD), also known as Principal Component Analysis (PCA) [2], identifies linear
combinations of the variables of interest in state space and captures the most
significant patterns and variations in the dataset. POD and PCA are multi-linear
dimensionality reduction techniques, and, as such, they can become underoptimal
for data showing strong non-linearities. In this case, non-linear dimensionality
reduction techniques are preferred. The latter can be broadly classified into two
categories: (1) autoencoders and (2) manifold learning methods [3]. Autoencoders
aim to find a compressed representation of the data while retaining as much
information as possible. POD can be viewed as a linear autoencoder, while classic
examples of non-linear autoencoders include Artificial Neural Networks (ANN) [4,5]
and kernel PCA [6,7]. On the other hand, manifold learning methods seek to discover
low-dimensional representations that preserve a certain measure of similarity within
the data without focusing on the loss of information during reconstruction [8].
Prominent techniques in this category include Locally Linear Embedding (LLE)
[9,10,11], ISOMAPs [12,13], and spectral submanifolds [14].

2.2 Manifold Alignment

If low- and high-fidelity data are available and latent spaces are explored for both,
the latter will likely be different, and suitable approaches should be developed to
assess their difference. Characterizing the discrepancy between the latent space is
key to model correction terms that can be used to increase the fidelity of a low-fidelity
model. For that purpose, manifold alignment [15,16] represents a very appealing
technique to identify this shared latent space, facilitating effective information transfer
between the datasets. Wang and Mahadevan [16] describe two types of manifold
alignment techniques. The first approach involves finding the intrinsic low-
dimensional latent space for each dataset using any dimensionality reduction
method, followed by aligning these latent manifolds through Procrustes analysis of
the embedded data. The second approach identifies a shared latent space by
constructing a joint graph Laplacian, aiming to preserve both individual and shared
features of the datasets simultaneously within the resulting aligned latent space [17].
Manifold alignment techniques have been utilized in a variety of transfer learning
problems such as protein alignment [18], image matching [15], magnetic resonance
image classification [19], hyperspectral imaging visualization [20], automatic machine
translation [21], etc.
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2.3 Regression

Modeling the discrepancy between low- and high-fidelity data can be handled with
regression models. This allows the correction of the predictions from a low-fidelity
model at conditions not present in the original training data, allowing for exploring
the design space. In multi-fidelity reduced-order modeling, the regression model
combines values from different fidelities at observed locations to predict one variable,
meaning the regression model must incorporate a multi-fidelity formulation. Common
methods used in multi-fidelity frameworks include bridge functions with either
multiplicative [22] or additive corrections [23,24], ANNs [25], as well as CoKriging
[26,27,28] and Hierarchical Kriging [29], which offers accuracy comparable to
CoKriging but with the advantage of being relatively simpler to implement [17]. Both
CoKriging and Hierarchical Kriging are extensions of Kriging, also known as the
Gaussian Process Regression (GPR) [30], which is a very popular technique to predict
a distribution over possible values, which includes a mean value and a measure of
uncertainty for a given input. The CoKriging and Hierarchical Kriging techniques
found in the literature adapt the autoregressive model of Kennedy and O'Hagan [26].
This Markov property indicates that for the same training point, if high-fidelity
information is available, low-fidelity data cannot improve prediction accuracy. An
example of CoKriging is shown in Figure 1 using the toy datasets provided in [31].
The autoregressive characteristic is evident from the fact that the mean prediction
passes through the high-fidelity samples with zero uncertainty at those locations.

20 : : : :
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Figure 1 - Example of CoKriging regression [32]. The autoregressive characteristic is shown by mean
prediction passing through the high-fidelity samples with zero uncertainty at those locations.
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3. Multi-Fidelity Applications

Multi-fidelity frameworks have been applied across various scientific disciplines, as
illustrated by recent literature. Yang et al. [33] proposed a multi-fidelity reduced-order
model and global optimization method for the rapid and accurate simulation and
design of microfluidic concentration gradient generators. Perron et al. [34] utilized a
multi-fidelity framework to study high-dimensional displacement and stress fields
from a structural analysis involving differences in discretization size and structural
topology. Liu et al. [35] performed a hull form optimization process for resistance and
wake performance of a Japan bulk carrier (JBC) by using a multi-fidelity Co-Kriging
surrogate model. Nony et al. [36] evaluated atmospheric flow dispersion by
integrating Large Eddy Simulations (LES) with Reynolds Averaged Navier Stokes with
transport equation (RANS-TE) in a multi-fidelity framework. Demo et al. [25]
successfully combined the DeepONet architecture with POD and gappy POD for
sensor data, testing their approach on a parametric benchmark function and a
nonlinear parametric Navier-Stokes problem. Guo et al. [37] developed a multi-
fidelity Gaussian process, inspired by hierarchical Kriging, to model flame frequency
response, combining data from harmonic and broadband forcing.

Tong et al. [38] studied the combustion performance of an aero-engine combustion
chamber with a POD-Hierarchical Kriging multi-fidelity framework. Ozden et al.
[39,40] were the first to propose this method to build a multi-fidelity digital shadow
of a methane-hydrogen and ammonia combustion performances in a semi-industrial
furnace and a stagnation point reverse flow combustion. The proposed framework for
multi-fidelity digital-twin development is summarised in Figure 2.
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Figure 2 - Strategy for multi-fidelity digital twin development.

The impact of the high-fidelity simulations on the overall error associated with the
multi-fidelity reduced-order model (ROM) is shown in Figure 3.
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Figure 3 - 30-fold statistics of the NRMS error with increasing HiFi samples employing
an uncertainty-based strategy for the selection of the HiFi simulations [39].

The selection of an optimal number of high-fidelity simulations to balance accuracy
and training cost is key when building the multi-fidelity ROM. In [39], incremental
sampling strategies based on the variance of the co-kriging model were developed
to introduce high-fidelity simulations where the gain in terms of uncertainty reduction
was higher. Figure 3 demonstrates that around half of the training cost can be saved
while maintaining comparable error values with an appropriate choice of high-fidelity
simulations.

Figure 4 shows the comparison of the OH radical (flame marker) obtained with the
full CFD simulation (left) and the multi-fidelity ROM prediction using 41 low-fidelity
simulations with (a) 9 and (b) 27 high-fidelity simulations. The OH field topology
improves with additional HiFi simulations, reaching a satisfying flame location and
peak OH value with 27 high-fidelity simulations (out of 41).
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Figure 4 — Comparison of the full CFD simulation (left) and the multi-fidelity ROM prediction using 41
low-fidelity simulations with (a) 9 and (b) 27 high-fidelity simulations [39].

4. Conclusion

The proposed multi-fidelity framework relying on dimensionality reduction and non-
linear regression is effective in building digital shadows of complex combustion
systems. The combination of low- and high-fidelity data holds promise to reduce the
computational cost associated with the generation of the numerical simulations
required to generate the ROM. Future efforts from the working group members will
focus on strategies to update the ROM in time, to adapt to changes in boundary and
operating conditions.
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