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1. Introduction 

To mitigate anthropogenic carbon dioxide emissions, renewable synthetic fuels 

(RSFs) are critical for energy-intensive industries and long-range transportation. Both 

hydrocarbon RSFs, combined with carbon capture solutions, and carbon-free RSFs, 

such as hydrogen and ammonia, represent essential pathways toward a carbon-

neutral energy system. Hydrogen can be produced from purified water, while 

ammonia can be synthesised from nitrogen extracted from air. The main advantage 

of ammonia lies in its existing logistics infrastructure, while hydrogen requires 

significant advances in storage and distribution technologies. However, the presence 

of nitrogen in ammonia poses a considerable challenge to minimise NOx emissions 

[1]. In parallel, several hydrocarbon RSFs such as methanol, ethanol, dimethyl ether 

(DME), diethyl ether (DEE), dimethoxymethane (DMM), and oxymethylene ether 

(OME) also offer strong potential for decarbonisation [2], [3].  Modelling the 

combustion of these fuels requires detailed chemical mechanisms that accurately 

describe their behaviour across a wide range of operating conditions, including 

boilers, reciprocating engines, and gas turbines. 

Understanding and optimising RSF combustion behaviour requires the integration of 

high-fidelity simulations	[4][5][6][7][8][9][10][11][12][13][14][15][16][17], advanced 

diagnostics	 [18][19][20],[21],[22],[23], and systematic data collection. These 

approaches enable the characterisation of fundamental processes such as flame 

structure, ignition, turbulence–chemistry interaction, and pollutant formation, and 

they provide the foundation for predictive modelling and digital-twin development. 

Despite significant progress in numerical and experimental capabilities, several 

challenges persist. The computational cost of incorporating detailed chemical 

mechanisms remains high, particularly for complex RSFs, and the inclusion of 

multiphase effects, radiation, and pollutant formation adds further complexity. On the 

experimental side, diagnostic techniques originally developed for hydrocarbon fuels 

must be adapted for carbon-free or nitrogen-containing fuels, while quantitative 

measurements at high pressure remain limited. 

Bridging the gap between laboratory-scale research and industrial applications 

requires coordinated efforts in data generation, management, and sharing. Aligning 

experimental and numerical studies under comparable conditions, and ensuring that 

non-dimensional parameters such as the Reynolds, Karlovitz, and Damköhler numbers 

are representative of real systems, are crucial for developing reliable predictive 

models. This deliverable provides guidelines for the implementation of RSFs in 

combustion experiments and data collection, offering a framework for reproducible, 

interoperable, and scalable research across the COST network. 
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Figure 1 - The integration of high-fidelity simulations, advanced experimental diagnostics, and novel 

AI-driven data analytics enables a transformative approach to the digital design and optimization of 

sustainable, clean technologies. 

2. Systematic data collection 

2.1. Reaction kinetics data 

The most versatile chemistry database is the National Institute of Standards and 

Technology (NIST) Webbook (https://webbook.nist.gov), which is also useful for 

combustion. Data sets used to develop reaction mechanisms include ignition delay 

times (IDT) measured in shock tubes (ST) and rapid compression machines (RCM), 

laminar burning velocities (LBV), and concentration measurements in jet-stirred 

reactors (JSR), flow reactors (FR), and ST. Since the apparatus for these measurements 

is similar across laboratories worldwide, reproducibility has been excellent for data 

over the past few decades. Due to the sufficiently large amount of similar data sets 

for commonly investigated species, it is possible to locate and highlight problematic 

measurements [24]. 

Reaction kinetics data points can be efficiently stored in an .xml file format, and 

occupy relatively low space. The entire Reaction kinetics, Spectroscopy, and 

Thermochemistry (ReSpecTh https://respecth.elte.hu/) database is less than one GB 

and contains more than 160,000 individual data points from more than 5400 data 

series. A further highlighted resource for reaction mechanisms is the SciExpeM 

(https://sciexpem.polimi.it) database. An automated reaction mechanism generator 

has been developed at MIT (https://rmg.mit.edu) to principally help CFD calculations. 

https://webbook.nist.gov/
https://respecth.elte.hu/
https://sciexpem.polimi.it/
https://rmg.mit.edu/
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2.2 Experimental combustion data sets 

Reliable experimental data are essential for developing, validating, and improving 

combustion models for renewable synthetic fuels (RSFs). Among the most valuable 

community resources are the Turbulent Non-Premixed Flame (TNF) Workshop 

datasets (https://tnfworkshop.org), which have established a benchmark for 

reproducible, high-fidelity measurements in turbulent reacting flows. The TNF 

database contains systematically acquired and quality-assured data for canonical 

flame configurations, such as piloted jet flames of methane, hydrogen, and syngas 

mixtures, covering a wide range of Reynolds numbers, equivalence ratios, and 

boundary conditions. 

These datasets provide detailed measurements of velocity, mixture fraction, 

temperature, and major and minor species, often obtained through simultaneous 

application of advanced optical diagnostics such as Raman and Rayleigh scattering 

and laser-induced fluorescence (LIF). The availability of consistent experimental 

conditions and well-documented uncertainty quantification makes the TNF data 

uniquely suited for model validation, comparison of numerical simulations, and 

machine-learning-based model development. 

For renewable and carbon-free fuels, ongoing efforts are extending the TNF database 

to include ammonia, hydrogen, and e-fuel flames, addressing their distinct 

combustion characteristics such as strong thermodiffusive effects and low-

temperature reactivity. Similar initiatives, including the International Sooting Flame 

(ISF) Workshop (isfworkshop/data-sets) and the Sydney and Darmstadt flame 

datasets, complement the TNF effort by providing data for alternative fuels, flame–

wall interactions, and pollutant formation. 

The systematic organisation of these experimental datasets, their open accessibility, 

and their alignment with numerical benchmarks are fundamental to accelerating the 

development of predictive models for RSF combustion. 

 

2.3 Numerical combustion data sets 

High-fidelity simulations such as Direct Numerical Simulation (DNS) and Large Eddy 

Simulation (LES) are increasingly used to generate benchmark datasets for model 

validation and data-driven modelling. DNS provides detailed information on 

turbulence–chemistry interactions, flame instabilities, and ignition behaviour in 

canonical configurations with reduced mechanisms, while LES enables the 

exploration of more complex, engine-relevant conditions. 

The growing availability of open-access numerical datasets (e.g. BLASTNet [25]) 

facilitates cross-validation and model development. Data from DNS and LES are now 

systematically post-processed to include not only flow and scalar fields, but also 

https://www.adelaide.edu.au/cet/isfworkshop/data-sets
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chemical reaction rates, curvature, and conditional statistics, all stored in 

standardized, machine-readable formats. Integrating these with experimental 

databases enables hybrid workflows for AI-assisted model training and uncertainty 

quantification. 

3. Advancements in reaction kinetic modelling for NH3 and NH3/H2 

flames 

Numerous mechanisms have been proposed in the literature to model the oxidation 

of NH3/H2 mixtures [26], [27]. Two large-scale quantitative mechanism comparison 

works have been carried out in the last two years for NH3 and NH3/H2 combustion: 

one by Girhe et al. [28] (RWTH Aachen) in 2024, using 3,997 data points, and the 

other by Szanthoffer et al. [29] (ELTE Budapest) in 2025, using 17,242 data points 

from 110 papers. The two studies applied different methodologies to assess the 

performance of the investigated models. Girhe et al. [28] used the curve matching 

(CM) approach [30] proposed by the CRECK Modelling Group at POLIMI. The CM 

approach evaluates the similarity between the smoothly interpolated experimental 

and prediction curves, as well as their first derivatives, based on their deviation and 

correlation. In contrast, Szanthoffer et al. [29] utilised a root-mean-square error 

function to evaluate the pointwise agreement between the simulated and measured 

results, normalised by the uncertainties of the experimental data. This methodology 

was initially proposed and applied by Turányi et al. [31] (ELTE Budapest). [29] 

compared 33 mechanisms and concluded that the NUIG-2024 [32] was the best 

mechanism, followed by the Tsinghua-2024 model [33]. It is clear from these studies 

[28], [29] that even the best available NH3 mechanisms are not satisfactorily accurate 

under all experimental conditions. Therefore, further mechanism development is 

necessary for NH3 and NH3/H2 fuel mixtures. 

In a joint research effort involving groups from the HUN-REN Research Centre for 

Natural Sciences (RCNS), ELTE Budapest, Cardiff University, and Poznan University, a 

small-scale, optimised NH3 combustion mechanism was developed for the oxidation 

of NH3/H2 mixtures [34]. The research was primarily carried out at the HUN-REN 

RCNS. The initial mechanism of the optimisation was the San Diego mechanism [35], 

which had medium performance in the mechanism comparison work of Szanthoffer 

et al. [26]. The peculiarity of this mechanism is that it contains only 21 species and 64 

reactions, which is very small relative to a typical detailed NH3 mechanism (30–40 

species and 250–300 reactions). The work aimed to develop a compact, yet robust 

model for Computational Fluid Dynamics (CFD) simulations. 

Recently, Szanthoffer et al. [36] proposed a generally applicable, systematic approach 

for the development of more accurate combustion mechanisms, which does not 

require the optimisation of a mechanism. Testing detailed combustion mechanisms 

typically concludes that some mechanisms reproduce the experimental data well at 

most conditions but are inaccurate at other conditions. However, other mechanisms 
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may perform well under these conditions [28], [29]. The idea was that a better 

mechanism (“mosaic mechanism”) may be obtained by identifying the overall best-

performing mechanism and adding the most important reaction steps and their rate 

parameters from another mechanism with good performance at the conditions where 

the overall best model is ill-performing. A new algorithm based on this approach was 

presented in this work, which was successfully applied using a comprehensive 

collection of NH3/air LBV data (348 data points in 61 data series) and eight recent 

detailed NH3 combustion mechanisms. The proposed algorithm can be applied to 

any chemical kinetics system and any other types of experiments. All data needed to 

apply the algorithm to various combustion systems are already available or can be 

generated with minimal human effort using the experimental data files, mechanisms, 

and codes available on the ReSpecTh (https://ReSpecTh.elte.hu) website. 

4. Advancements in numerical modelling and data sharing 

Recent advances in high-performance computing and data science have greatly 

enhanced the capability to model the combustion of renewable synthetic fuels (RSFs). 

High-fidelity simulations, including Direct Numerical Simulation (DNS) 

[4][5][6][7][8][9][10][11][12][13][14] and Large Eddy Simulation (LES) [15][16][17]	, 

are increasingly used to generate detailed datasets that resolve the fundamental 

interactions between turbulence and chemistry. Within the framework of this COST 

Action, several new DNS studies have been conducted, including high-pressure 

simulations of hydrogen flames and investigations of turbulent combustion dynamics 

under conditions representative of energy-intensive industrial systems. These 

simulations provide valuable reference data for the validation and calibration of 

reduced-order and machine-learning-assisted models. 

A key objective of the Action has been to promote open and reproducible research 

through data sharing and collaborative platforms. Several high-fidelity datasets have 

been collected and shared within the network, such as DNS of sooting flames 

available through the ERCOFTAC repository at: 

https://www.ercoftac.org/events/machine-learning-for-fluid-dynamics/workshop-

test-cases/. These datasets include detailed information on velocity, temperature, 

species concentration, and soot statistics, and have been widely used by the 

community for model validation, uncertainty quantification, and data-driven model 

development. 

To further encourage the use of data and foster collaboration across disciplines, the 

Action has organised open data challenges, such as the CYPHER Data Challenge 

hosted at: https://cypher.ulb.be/data-challenge/. These initiatives provide an ideal 

framework to engage both experimental and modelling groups, stimulate the 

adoption of data-driven and AI-based methods, and demonstrate the potential of 

shared datasets to accelerate innovation in combustion science. 

https://www.ercoftac.org/events/machine-learning-for-fluid-dynamics/workshop-test-cases/
https://www.ercoftac.org/events/machine-learning-for-fluid-dynamics/workshop-test-cases/
https://cypher.ulb.be/data-challenge/
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Together, these efforts contribute to establishing a culture of open, FAIR-compliant 

data practices within the European combustion community. By linking new high-

fidelity simulations, shared databases, and community-driven challenges, the COST 

Action is promoting a more collaborative, data-driven approach to modeling and 

optimizing renewable synthetic fuel combustion systems. 

5. Systematic experiments and advanced sensing 

Systematic and high-quality experiments are crucial for generating the data necessary 

to validate and improve combustion models for renewable synthetic fuels (RSFs). The 

reproducibility and accuracy of these experiments depend on the use of well-

characterised facilities, advanced diagnostics, and standardised data acquisition 

protocols.  

Recent progress in advanced laser-based diagnostics has significantly enhanced the 

capability to characterise reactive flows. Techniques such as planar laser-induced 

fluorescence (PLIF), Raman and Rayleigh scattering, coherent anti-Stokes Raman 

spectroscopy (CARS), and chemiluminescence imaging enable spatially and 

temporally resolved measurements of temperature, major and minor species, and 

intermediate radicals, including OH, CH, and NH. These diagnostics have been 

extended to high-pressure and high-temperature environments relevant to industrial 

combustion, providing detailed insights into flame stability, pollutant formation, and 

thermodiffusive instabilities. 

The Action also promotes the integration of multi-sensor and AI-assisted sensing 

strategies. Convolutional Neural Networks (CNNs) and other machine-learning 

techniques are increasingly applied to process high-speed imaging or spectroscopic 

signals for automated flame classification, anomaly detection, and control. 

The alignment of experimental and simulation efforts within the COST network 

strengthens the development of predictive, data-driven models and supports the 

transition toward digital-twin-enabled RSF combustion systems. 

6. Conclusion 

The implementation of renewable synthetic fuels (RSFs) in combustion experiments 

and data collection is a crucial step toward the decarbonisation of energy-intensive 

industries. The COST Action has fostered significant progress in this direction by 

promoting a systematic, data-driven approach that integrates high-fidelity 

simulations, advanced diagnostics, and open data sharing. Reliable experimental 

datasets, such as those from the Turbulent Non-Premixed Flame (TNF) Workshop, 

combined with new numerical data from Direct Numerical Simulation (DNS) and Large 

Eddy Simulation (LES), provide a strong foundation for model validation and 

mechanism development for hydrogen, ammonia, and e-fuel combustion. 
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Through the coordinated efforts of its members, the Action has produced and shared 

new benchmark DNS datasets, including high-pressure hydrogen flames and sooting 

turbulent flames, and has encouraged the community to use and expand these 

resources via open initiatives such as the ERCOFTAC test cases and the CYPHER Data 

Challenge. These activities have strengthened collaboration across Europe, 

enhanced reproducibility, and accelerated the adoption of data-centric and AI-

assisted research methods in the field of combustion science. 

Looking ahead, the continued integration of experiments, simulations, and data 

analytics will be essential to developing predictive tools and digital twins for RSF 

combustion systems. Establishing common standards for data storage, metadata, and 

uncertainty quantification will ensure that future research remains interoperable and 

transparent. The outcomes of this Action lay the groundwork for a new, collaborative 

paradigm in combustion research, enabling Europe to move closer to a sustainable 

and carbon-neutral energy future. 
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