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1. Introduction

Analyzing combustion systems through experiments or simulations is expensive in cost and
time. This makes it unaffordable to explore many operating conditions to iterate the design
of a combustion system. For what concerns the simulations, the high computational cost
comes from the high-dimensional features and complexity of the combustion system [1]. It
is typically defined by tens to hundreds of species and contains hundreds to thousands of
reactions to solve. Furthermore, the fluid dynamics and the chemistry are interconnected and
happening at a large range of timescales making this a stiff problem to solve. The principal
challenges associated with the modeling of turbulent combustion arise from the involvement
of several chemical species, the presence of a wide range of spatial and time scales, and
the intricate coupling among multiple physical sub-processes [2] . In hydrocarbon combus-
tion, the number of chemical species can vary significantly, ranging from approximately 50 to
over 7000, depending on the specific fuel considered. Nevertheless, for many common fuels,
detailed chemical kinetic mechanisms are available that typically comprise between 150 and
250 species. The numerical resolution of the governing conservation equations requires an
accurate representation of all relevant spatial and temporal scales. The characteristic length
scales extend from the macroscopic dimensions of the combustion apparatus to the smallest
dissipative scales, such as the Kolmogorov length scale of turbulence, or, in certain combus-
tion regimes, to even finer scales within the reaction zones. Similarly, the pertinent time
scales range from the overall residence time of the flow to the minimum of the Kolmogorov
time scale and the fastest chemical time scales. Given the broad disparity across these spatial
and temporal ranges, it is widely acknowledged that direct numerical simulation (DNS) of
practical combustion devices will remain computationally prohibitive for the foreseeable fu-
ture. Consequently, any viable modeling framework must necessarily represent the small-scale
processes through statistical or averaged approaches rather than by direct numerical reso-
lution. Over recent decades, several methodologies has been developed for the modeling of
turbulent combustion. Most frameworks address the challenges posed by fine spatial–temporal
scales and large chemical mechanisms through either RANS or LES closures in combination
with reduced descriptions of the chemistry. The principal point of divergence lies in how
the coupling between chemical reaction and molecular diffusion is represented. Broadly, pre-
vailing strategies fall into two classes: flamelet-type and PDF-like approaches. The steady
flamelet model is the canonical example of flamelet-type formulations. Its defining features
are: - Strong assumptions regarding reaction–diffusion coupling, leading to the hypothesis that
species mass fractions evolve on a very low-dimensional manifold (typically 2D or 3D) in the
composition space. - Determination of manifold properties obtained through laminar-flame
computations performed a-priori. - Tabulation of the manifold quantities required during the
turbulent computation (feasible only for very low-dimensional manifolds). On the other hand,
transported PDF methods exemplify PDF-like approaches, characterized by: - No imposed
restriction that compositions lie on a low-dimensional manifold - A computational represen-
tation in which fluid composition is carried by species mass fractions associated with a large
ensemble of particles or other stochastic elements. - An exact treatment of chemical source
terms without additional modeling assumptions. Compared with flamelet-type models, PDF-
like methods benefit from avoiding low-dimensional manifold constraints and from an exact
treatment of reaction kinetics; however, they must deal with modeling reactive mixing and
with the substantial computational expense of treating detailed chemistry within the turbulent
calculation itself rather than in the pre-processing stage. Although they are high-dimensional,
combustion system can intrinsically be characterized by a few controlling variables defining a
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low-dimensional manifold which can allow to accelerate simulations [3]–[5]. Employing this
property, it is possible to speed up the simulations by running in this reduced space, called a
reduced-order model (ROM) [6]. In this way, instead of solving the equations for every species
of the system, only the equations for the reduced variables have to be solved. After simu-
lation in reduced space, regression can be performed to retrieve the original full-dimensional
thermo-chemical pattern. Moreover, projecting the high-dimensional data onto the reduced
space makes it possible to visualize it and understand the hidden patterns.
Experts usually define the low-dimensional manifold using thermochemical variables based on
their knowledge of the system [7], [8]. But recently, data-driven techniques have emerged to
parametrize automatically the low-dimensional manifold [9], [10]. These techniques help to
find improved manifold topologies representing better the data in the reduced space which in
turn also improve the accuracy of the ROMs.

2. Purpose of low-dimensional manifold for ROM
Combustion is governed by the conservation of the total mass and the mass of each com-
ponent, the conservation of momentum and energy. Especially the conservation of mass for
each component that is of interest here. For each species, a partial derivative equation (PDE)
has to be solved as given in Equation 2.

∂(ρYi)

∂t
= −∇ · (ρuYi) +∇ · (ρDi,m∇Yi) + ω̇i. (1)

with Yi and ω̇i respectively the mass fraction and source term of species i, ρ the density, Di,m

the diffusion coefficient. The first term of the right hand side corresponds to the convection
term, the second term to the diffusion term and the third term to the source term coming
from the chemical mechanism.
The computational burden of combustion simulations comes from this transport equation as
this PDE has to be solved for every species [1]. A combustion process typically includes tens
to hundreds of species and as a result this step becomes costly to compute.
Taking advantage from the fact that the combustion process can be described by a few
variables [3]–[5], the number of equations to solve can be drastically reduced. A few manifold
variables can be defined as a linear combination of the species’ mass fraction and are commonly
called progress variables (PV). Thus, the PVs are defined as YPV =

∑n

i=0
wi ∗ Yi with wi the

weight assigned to species i. Using the linearity property of partial derivatives and plugging
the definition of the PVs in Equation 2 gives the following equation:

∂(ρYPV)

∂t
= −∇ · (ρuYPV) +∇ · (ρD∇YPV) + ω̇PV. (2)

assuming the same diffusion coefficient for every species.
As a result, instead of solving tens to hundreds of PDEs for every species, only two or three
need to be solved, i.e., the number of progress variables summarizing the combustion, and
hence speeding up the simulations.
The concept of a low-dimensional manifold lies at the heart of reduced-order modeling be-
cause it captures the essential dynamics of complex reacting systems within a compact and
computationally tractable subspace. In combustion, despite the apparent high dimension-
ality of the chemical composition space, the evolution of thermo-chemical states is often
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strongly correlated and constrained by a limited number of slow, dominant modes. These
slow modes govern the overall reaction progress, while fast transients rapidly relax toward
a low-dimensional attractor. This property justifies the approximation of the full chemical
state by a small set of controlling variables defining an intrinsic manifold in the composition
space. Identifying such a manifold enables an efficient mapping between the reduced vari-
ables and the full thermo-chemical state. In the context of ROMs, this mapping replaces the
explicit integration of detailed kinetics by precomputed or learned relationships, drastically
decreasing computational cost while preserving accuracy for the relevant operating condi-
tions. From a physical standpoint, the manifold encodes the coupled effects of chemistry and
transport, representing the quasi-equilibrium surface that the system trajectories follow during
combustion. From a computational standpoint, it provides a consistent reduced coordinate
system for tabulation, interpolation, and machine-learning-based regression. The choice of
the manifold variables and their topology directly determine the performance of the ROM. A
well-chosen manifold ensures that key quantities of interest - such as temperature, intermedi-
ate species, and pollutant precursors - can be reconstructed accurately and uniquely from the
reduced coordinates. Conversely, an ill-posed or non-unique mapping leads to ambiguity and
loss of predictive capability. Consequently, significant research efforts have focused on both
physics-informed and data-driven strategies for manifold identification and optimization. Re-
cent developments in machine learning have made it possible to discover non-linear manifolds
that better capture complex reaction–diffusion interactions while maintaining smoothness and
monotonicity—properties essential for numerical stability and regression. In summary, the
purpose of introducing a low-dimensional manifold is not merely to simplify the governing
equations but to provide a physically meaningful and computationally efficient representation
of the reacting flow. The manifold acts as the cornerstone upon which ROMs are constructed,
defining the reduced coordinate space in which chemistry and transport can be accurately and
rapidly evaluated. The following section introduces the flamelet-like models, which formalize
this principle by precomputing manifold relationships under simplified laminar configurations
and using them to close the governing equations in turbulent simulations.

2.1. Flamelet-like models
Among the most important manifold-based techniques, the flamelet-like models or tabulated
chemistry methods [2] play a key role in including the effects of detailed chemistry in the
modeling of turbulent reactive flows [11].
Tabulated chemistry aims at expressing the thermochemical variables in a reduced chemical
state space prior to a CFD computation. The set of species mass fractions involved in
detailed mechanisms is replaced by a reduced set of coordinates (ψ1, ψ2, ..., ψn), where n is
the number of dimensions of the thermochemical database. Tabulated chemistry is efficient
in comparison with detailed chemistry if n << Nd

s. This method relies on the observation
that the chemical trajectories accessed during the combustion process are confined to a sub-
space of low dimension n called manifold. Thermo-chemical properties ϕ such as species
mass fractions, chemical reaction rates, temperature are then approximated by a n-variables
function F tab in the reduced state of coordinates (ψ1, ψ2, ..., ψn):

ϕ ≈ F tab (ψ1, ..., ψn) . (3)

Such manifold does not have an analytical expression but is defined in a discrete form through a
chemical look-up table evaluated with detailed chemistry, explaining the terminology tabulated
chemistry.
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There exists different variants like the flamelet generated manifold (FGM) [6], flamelet-
progress variable (FPV) [12], steady flamelet model [13], reaction-diffusion manifold (REDIM)
[14], [15], flame prolongation of the intrinsic low-dimensional manifold (FPI) [16]. They all
rely on projecting the state space onto a lower-dimensional manifold to replace the detailed
combustion chemistry mechanism and therefore speeding up the simulation. As an example
for FGM, the manifold is generated with multiple 1D flamelets at varying conditions as shown
in Figure 1 [17]. Given the manifold, the chemistry is obtained through tabulation [18], [19].
The progress variable source term is therefore obtained by linear interpolation given the con-
trol variables of the table. The two major drawbacks of this technique are the memory usage
and the inference time. To be accurate, a large table is required. Furthermore, retrieving a
value from this large table is slow, which is not optimal when performing simulations. Hence,
neural networks [20], [21] and other machine learning techniques [22] have become popular in
the last decade to replace tabulation solving both the memory and inference speed problems.

Figure 1: Example of a flamelet generated manifold (FGM) [17].

In this context, the use of single flamelet archetype is efficient to capture the chemical struc-
ture of well-identified flames (such as purely premixed or diffusion flames) but introduces bias
in the prediction of the chemical structure of more complex situation such as stratified flames.
Both premixed and non-premixed flamelet ingredients must be combined in the same look-up
table. A solution is to solve the projection of the full set of mass conservation species balance
equations into a restricted subset of the composition space or to use 1-D partially-premixed
flamelets to generate a chemical look-up table. Another issue encountered when applying
tabulated chemistry in practical combustion system simulation is the simultaneous treatment
of complex phenomena such as heat losses, multiple fuel inlets, or dilution by hot gases. In
the case of diluted combustion, it was showed that at least five coordinates are required to
simulate the impact of fresh gas dilution by recirculating products. Good agreements have
been observed between the numerical prediction and measurements in a non-adiabatic diluted
combustor, but the generation of this chemical look-up table becomes very sophisticated and
CPU expensive, requiring the computation of 100,000 flamelets. Tabulated chemistry en-
counters a limitation in the empirical selection of manifold coordinates, particularly when a
multitude of physical parameters influence the chemical flame structure. Automatized dimen-
sion reduction techniques such as local PCA (Principal Component Analysis) is then helpful
to automate the definition of tabulated chemistry dimensions. When the dimensionality of
the look-up table increases, the tabulation process itself can also pose challenges. It becomes
nontrivial to tabulate data that lack a structured organization in the phase space. A viable
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solution is to take advantage of supervised non-linear regression algorithms, such as Arti-
ficial Neural Networks (ANNs) or Gaussian regression processes. Recent research has also
focused on overcoming the traditional limitations of large lookup tables, which scale poorly
with dimensionality. These “neural flamelet” or “hybrid tabulation” approaches have enabled
coupling between data-driven surrogates and physics-based manifolds, allowing flexible exten-
sions to multi-fuel, multi-regime, or heat-loss-affected combustion. Furthermore, research has
highlighted the importance of manifold topology assessment for ensuring that the reduced
coordinates provide a unique and smooth mapping to the full thermochemical state. Metrics
based on conditional variance, gradient smoothness, or cost-function evaluation have been
developed to quantify manifold quality before implementation in CFD solvers. This step is
crucial for maintaining model robustness, as poor manifold topology can lead to non-unique
regression and instability in reduced-order simulations. Looking forward, the integration of
flamelet-like models with uncertainty quantification and active learning represents a promising
direction. In such frameworks, the manifold is iteratively refined using high-fidelity data (e.g.,
DNS or experiments) in regions of high prediction uncertainty. This creates a self-correcting
loop between data acquisition and manifold construction. These advances illustrate how the
flamelet paradigm is evolving from static tabulation to adaptive, data-enriched reduced-order
modeling, ensuring that the low-dimensional manifolds remain accurate, interpretable, and
computationally efficient even in complex turbulent reacting flows. Finally, flamelet-based
manifolds serve as an essential bridge between high-fidelity chemistry and reduced-order rep-
resentations. By defining a physically interpretable low-dimensional subspace, they provide
an effective starting point for data-driven ROM development and for hybrid methods that
combine pre-tabulated physics with online learning or system identification. As such, modern
flamelet-like models no longer function solely as static chemistry surrogates, but as adaptable,
data-enriched frameworks for real-time and multiscale combustion simulations.

3. Low-dimensional manifold identification

To parametrize the manifold, physics-based variables were originally used relying on expert
knowledge. Nowadays, data-driven approaches have gained increased attention to find the
optimal control variables of the manifold. The two categories are described in the following
sections.

3.1. Physics-based variables
Based on the characteristics of the combustion process under consideration, experts selected
specific physics-based variables to define the manifold. The most commonly used variables
are listed below, though the list is not exhaustive. Among them, the progress variable (PV)
[6]–[8], [17], [23]–[27] is one of the most widely employed, which indicates the progress of the
combustion. As explained in Section 2, the progress variable can be either one species’ mass
fraction or a linear combination of species’ mass fractions. For example, the main products and
reactants of the combustion are typically used. For hydrogen combustion, hydrogen itself [28]
or a combination of hydrogen, water and oxygen [23], [24] is used. In case, one is interested
to capture NOx, nitric oxide (NO) can be used as a second progress variable or combined
with other species [17]. Moreover, the progress variable can be associated with the mixture
fraction [7], [25], [29]. The mixture fraction [30] indicates the local ratio between fuel and
oxidizer and is therefore complementary of the progress variable. Another typical controlling
variable of the manifold is the enthalpy, typically used for non-adiabatic systems [6], [8], [25],
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[27]. Finally, the dissipation rate is yet another possible variable [29].

3.2. Data-driven approaches
With the increasing computational power and amount of data in the last decades, data-driven
approaches have gained prominence [31], [32]. Compared to physics-based approaches, the
manifold topology identification is automated and relies on data. Most common methods
are principal components analysis (PCA) and the autoencoder discussed in the following
paragraphs.

3.2.1. PCA/POD
Principal components analysis (PCA) [33] or proper orthogonal decomposition (POD) [34]
is a common technique to reduce the dimension of the data. The technique finds the main
directions of variation (principal components) by solving an eigenvalue decomposition of the
covariance matrix. To obtain a low-dimensional manifold, the first two or three principal
components are selected.
This technique is appealing owing to the limited computational cost compared to other data-
driven approaches introduced later. Moreover, the technique does not require a lot of hy-
perparameter tuning. Only the preprocessing of the input data is needed. But, the main
drawback of this technique is that the linear projection is optimal for a linear reconstruction
of the original data. Therefore, the projection is not optimal in case a non-linear regression
technique can be used to reconstruct the original data. To circumvent this drawback, local
PCA variants [35] have been introduced. A typical method is to cluster the data and apply
PCA locally on each cluster [36], [37]. Another method to non-linearize the PCA technique
is kernel PCA [38]. A kernel function projects the data in a higher dimension and PCA is
then applied in that higher dimensional space. However, this variant makes the projection
non-linear which is not ideal in case it is used for a ROM as the transformation of the transport
equations is not straightforward anymore.

Figure 2: Example of PCA applied on a 2-dimensional dataset with the first principal compo-
nent indicated [10].

3.2.2. Autoencoders
The autoencoder [39] is a type of neural network architecture that naturally learns in an un-
supervised way a low-dimensional representation of the data. An example of this architecture
is shown in Figure 3 [10]. The neural network is composed of an encoder, a decoder and a
bottleneck in-between. The encoder projects the input onto a reduced space, corresponding
to the bottleneck, and the decoder reconstructs the original input data given the reduced
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representation. Both parts can be either linear or non-linear [40]. Therefore, through back-
propagation during training, the weights of the neural network are optimized to learn the
optimal low-dimensional representation of the input data to reconstruct the output variables
as accurately as possible.
Compared to PCA, the autoencoder can be seen as a more general method to find a low-
dimensional manifold as non-linear projection and reconstruction are possible. Moreover, the
neural network is not restricted to reconstructing the input. An arbitrary choice of output
variables is possible as opposed to PCA [10], [40].

Figure 3: Example of an encoder-decoder architecture for a combustion application. [10]
The complete state space is provided as input and the encoder-decoder learns to find a low-
dimensional manifold that can optimally reconstruct the important quantities at the ouptut.

3.2.3. Other techniques
Other data-driven approaches for manifold identification are t-distributed stochastic neighbor
embedding (t-SNE) [41], isomap [42], uniform manifold approximation and projection (UMAP)
[43], locally linear embedding (LLE) [44], diffusion maps [45], [46]... These techniques are
less popular for the field of reacting flows due to their non-linear character.

4. Topology optimisation

This section discusses different state-of-the-art methods to get improved manifold topologies.
The discussed methods are the progress variable optimization, the optimal estimator, methods
to improve PCA projections and the autoencoder.

4.1. Progress variable optimization
Since the progress variable was originally defined from expert knowledge, it constitutes a good
candidate for optimization. As Ihme et al. [47] stated, the progress variable should respect
some principles. First of all, it should be monotonically increasing to have a one-on-one
correspondence with the state space variables. Otherwise, regression becomes challenging.
Moreover, the variables should vary smoothly over the progress variable [48] also to facilitate
regression afterwards. The other principles that Ihme et al. stated were that the PV should
easily be used in a transport equation, that the species included in the PV should have similar
timescales and that all manifold parameters should be independent of each other.
Given these constraints and the fact that the PV is a linear combination of the species’ mass
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fractions, researchers have tried to solve this optimization problem. Ihme et al. [47] was the
first one trying to optimize the progress variable with an unconstrained optimization problem.
Subsequently, Niu et al. [48] tried based on similar criteria to solve a constrained optimization
problem. Vasavan et al. [49], [50] optimized the PV using a multi objective optimization
(MOOP) method with a trade-off between monotonicity and reconstruction accuracy of the
state space. More recently, Tang et al. [51] and Rahnama et al. [52] employed genetic
algorithms to find the optimized PV with the constraint of being monotonic. Zdybał et al.
[53] optimized the progress variable using an encoder-decoder with the goal to reconstruct
accurately some user-defined quantities from the original state space. This method is further
discussed in a following section about autoencoders.
Alternatively, instead of solving an optimization problem, a sensitivity analysis can be per-
formed to find the most suitable PV from a set of predefined PVs [54], [55].

4.2. Optimal estimator
The concept of optimal estimator [25], [56]–[58] is a method to identify the best set of input
parameters based on the conditional mean. The method considers two sources of errors: ir-
reducible error and functional error. The first one corresponds to the error inherently present
when defining a model with a set of input parameters. The latter corresponds to the error
introduced by the functional form of the model, being an approximation of the optimal estima-
tor. Using histograms, neural networks or other regression techniques, they approximate the
irreducible error reducing the functional error to a minimum. Comparing then the irreducible
error employing different sets of input parameters, it can be attempted to identify the best
set of parameters defining the low-dimensional manifold for a given application.

4.3. PCA
To improve the manifold obtained with PCA, several preprocessing steps can be applied [59].
One important preprocessing step is the centering and scaling of the input data prior to
applying PCA. There is no universal rule on the optimal centering and scaling. The most
common ones, like auto, pareto, VAST, range, level, max, ⟨0, 1⟩ and ⟨−1, 1⟩, have to be
tested [60] on the specific case.
To automate the pre-processing, the cost function [61] can be used by comparing the manifolds
obtained from differently pre-processed PCAs. Moreover, using this cost function, the input
variables can be automatically selected [60] further improving the manifold representation.
Another preprocessing step is the outlier removal [59] since they can significantly affect the
principal components. Finally, to address issues related to data imbalance, kernel density
weighting [62] can be applied to ensure a more uniform sampling of the data space.

4.4. Autoencoder
Autoencoders have recently been used for manifold topology optimization for combustion
problems. Zdybał et al. [10], [32] introduced an encoder-decoder architecture with a single-
layer linear encoder and a non-linear decoder, depicted in Figure 3. The encoder optimizes
the linear combination of input species’ mass fractions to find the optimal progress variables,
driven by the quantities of interests at the output layer. They also introduced projection-
dependent variables at the output, such as the progress variable source terms, whose definition
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change throughout the optimization. Later, Zdybał et al. [53] applied a modified version of
the encoder-decoder architecture on different datasets of ammonia/hydrogen mixtures. In
this architecture, fixed mixture fraction is directly used as one of the manifold parameters and
only the progress variable is being optimized. This shows that the architecture can be a hybrid
combination of a physics-informed and data-driven approach. They also showed an example
where the stoichiometric enthalpy defect is used as third manifold parameter for non-adiabatic
systems. This illustrates the versatility of the encoder-decoder architecture with tunable input
and output variables. Similarly, Perry et al. [63] used the encoder-decoder architecture to
co-optimize the manifold parameters and the subfilter closure model for LES. At the input,
they used the internal energy and density directly as fixed manifold parameters. Next to these
variables, they optimized two progress variables using species’ mass fractions at the input.
Additionally, the subfilter variances of the progress variables were included at input of the
decoder to optimize the subfilter closure model.
For hydrogen flamelets, Armstrong et al. [64] optimized one progress variable alongside
mixture fraction or two progress variables using the encoder-decoder architecture. For the
decoder, they used the Partition of Unity Network (POUnet) [65] instead of a traditional
fully-connected neural network. This special type of network learns a set of local regression
models, e.g. RBF networks, and offers a high prediction accuracy [66]. Castellanos et al. [67]
used a variant of the autoencoder to construct a reduced space better suited for reduced-
order modeling. They applied a time-lag autoencoder where there is a time shift between the
input and output. Scherding et al. [68] showed a successful implementation of the autoen-
coder for a hypersonic flow in chemical non-equilibrium to reduce the number of transport
equations. A final application of the autoencoder is given by Rubini et al. [69] introducing
the framework “ChemZIP” to perform ROM simulations of turbomachinery reactors. In this
work, temperature and pressure are used next to two optimized progress variables to define
the low-dimensional manifold.

5. Tools to assess the topology of low-dimensional manifolds

To assess a priori the quality of a manifold topology, we identify two families of metrics.
The first one focuses on the structural correspondence between the low-dimensional and high-
dimensional manifolds [70]–[77]. These methods assess whether local and global structure in
the original space are preserved in the low-dimensional manifold. However, good performance
on such metrics does not necessarily guarantee the success of the resulting reduced-order
model. More recently, a second family of approaches has been introduced to assess the man-
ifold quality. Instead of focusing on structural correspondence, these methods evaluate how
well user-defined quantities of interest (QoIs) are represented in the low-dimensional manifold
[61], [78]. They measure how each QoI varies in the manifold at different scales. Thus, the
method penalizes manifold defects such as steep gradients and non-uniqueness, which make
regression difficult or even impossible, while rewarding properties like smoother gradients and
enlarged manifolds. In contrast to the first family, these metrics provide an indication of
how easily the QoIs can be regressed from the low-dimensional manifold. Therefore, a good
performance on these metrics suggest the potential for a successful reduced-order model.
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Figure 4: Illustration of how the manifold topology is assessed with the tool of Armstrong et
al. [78]. The variance of the QoI is measured at different scales [61] giving an evolution of D̂
at different length scales σ.

6. Successful ROMs employing a low-dimensional manifold
This section presents applications of the previously introduced manifold topology optimization
techniques to reduced-order models (ROMs) that operate on low-dimensional manifolds.

6.1. PCA/POD
Sutherland et Parente [9], [36] introduced the concept of using PCA for combustion modeling.
Since then, many researchers have used PCA to perform ROM simulations on combustion
cases. As explained previously, PCA offers an optimal linear dimension reduction. However,
non-linear regression techniques are now used to reconstruct the original state space increasing
the accuracy of the ROM [37], [79]. PCA can be combined with any regression technique
like linear regression [80], Kringing [81]–[85], neural networks [80], [85]–[87], polynomial
regression [85], support vector regression [80], [85], k-neirest neighbors (kNN) [85], gaussian
process regression (GPR) [37], [80], multivariate adaptive regression spline (MARS) [88],
[89]... With this, PCA has been applied successfully as ROM for many applications, e.g. LES
[37], [88], flame-wall interactions [87], 1D flame [81], [90], [91], 2D flame [81], [90], 3D DNS
[92], plasma [93], oil reservoir simulations [94]...

6.2. Autencoder
There are a few examples of successful ROMs employing a manifold obtained from an autoen-
coder. In section 4.4, cases of manifold optimization with the autoencoder were discussed.
Here, they are further explained on how they applied the optimized manifold on a ROM.
Zdybał et al. [53] optimized the progress variable using the encoder-decoder architecture.
Then, they performed a ROM simulation for one trajectory of an autoignition case. A sep-
arate neural network was trained to predict the PV source term. They found out that the
optimized progress variable performed better than traditional PVs defined by experts owing
to the reduced non-uniqueness. Similarly, Castellanos et al. [67] applied the time-lag au-
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toencoder on a hydrogen autoignition case which performed better than PCA. Armstrong et
al. [64] tested the optimized progress variables on 1D and 2D DNS simulations and showed
higher accuracy with the POUnet than traditional physics-based models. Rubini et al. [69]
performed the simulation of a turbo-reactor using an encoder-decoder. AN additional neural
network was used to predict the progress variable and temperature source terms. Finally,
Scherding et al. [68] used the encoder-decoder to optimize the progress variables for a hy-
personic flat-plate boundary layer and shock-wave boundary layer interaction with chemical
non-equilibrium. Next, they used random forest to cluster the data and a radial basis function
network to predict back the original state space. They reduced with 70% the CPU time while
keeping a high accuracy compared to the true solution.

6.3. Other manifold techniques
Here, examples of ROMs are presented using less common techniques of manifold identifi-
cation. Franz et al. [95] used isomap to construct the manifold for a ROM simulation of
a transonic flow over an airfoil. They compared it with traditional POD methods and the
projection-based ROM using the isomap was shown to be more accurate. Similarly, Zheng et
al. [96] used local linear embedding also applied on a transonic flow. Bykov et al. performed
ROM simulations based on the reaction-diffusion manifold (REDIM) for 1D and 2D flames
showing that the REDIM could be extended to more complicated cases. Yu et al. developed
also REDIM models. In this work, the model was tested on steady and transient counterflow
flames with a focus on the NOx prediction.

7. Conclusion

The use of low-dimensional manifolds to perform ROM simulations of reacting flows has shown
promising results in the past decades. Originally, manifolds were defined based on expert
knowledge. Nowadays, with the advance of data-driven techniques, PCA and autoencoders
have become popular tools to define and optimize manifold topologies. PCA has the advantage
of being computationally inexpensive and requiring minimal tuning. However, the technique
is not optimal for non-linear reconstruction of the original state space. On the other hand,
autoencoders offer a high flexibility in architecture, but are computationally demanding and
require careful hyperparameter optimization.
In recent years, many applications of both methods can be found to speed up simulations
of combustion systems. A path forward in the development of ROMs employing a low-
dimensional manifold would be the development of a general framework performing the di-
mension reduction and the ROM simulation simultaneously.
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