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1. Introduction 

Computational Fluid Dynamics (CFD) has become a cornerstone of modern 

engineering, enabling the detailed analysis of fluid behavior for applications ranging 

from aerodynamics and propulsion to energy systems. Its value lies in the ability to 

provide predictive insights that guide design, optimization, and performance 

assessment without relying solely on costly experiments. However, when applied to 

reactive flows, CFD simulations encounter significant challenges. The need to account 

for multiple chemical species, complex reaction kinetics, and their tight coupling with 

turbulent mixing makes these simulations highly demanding in terms of both accuracy 

and computational cost. Approaches such as Large Eddy Simulation (LES) offer a 

practical compromise by resolving large-scale turbulent structures while modeling the 

impact of unresolved, small-scale dynamics. While methods like LES highlight the 

essential role of CFD in capturing complex flow–chemistry interactions, current 

approaches remain computationally intensive and leave room for further 

development and improvement. Furthermore, LES, and CFD in general, result in very 

large dataset given the spatial resolutions required, making it challenging to elucidate 

the key relevant physical phenomena contained therein. 

Such limitations motivate the development of approaches that can extract essential 

patterns from large, complex datasets while reducing computational demands. In this 

context, unsupervised algorithms provide a versatile set of tools for addressing the 

challenges of high-dimensional CFD data. Clustering methods enable the automatic 

grouping of similar flow states and the identification of coherent structures [1-4], while 

dimensionality reduction and feature extraction techniques allow for compact yet 

informative representations of complex flow fields [4,5]. Building on these 

capabilities, adaptive model simplification strategies can leverage unsupervised 

insights to dynamically refine or select models based on local flow characteristics [5,6]. 

Together, these algorithms offer a systematic framework for improving the efficiency 

and interpretability of reactive flow simulations, supporting both reduced 

computational cost and enhanced physical fidelity in CFD analyses. 

In the literature, various unsupervised algorithms have been applied to the analysis 

of CFD data. Clustering methods such as k-means have been utilized to classify flow 

states and identify coherent structures, while Local Principal Component Analysis 

(LPCA) has enabled the capture of localized variability in heterogeneous, multi-scale 

flows [1,3]. For dimensionality reduction and feature extraction, techniques like 

Principal Component Analysis (PCA) and Proper Orthogonal Decomposition (POD) 

are widely adopted to obtain compact yet physically meaningful representations of 

high-dimensional flow fields, reducing computational cost while retaining key 

dynamics [6,7]. In addition, methods such as Vector Quantization Principal 

Component Analysis (VQPCA) provide a classification-based framework for adaptive 

local model selection, in which different flow regions are dynamically assigned to the 
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most appropriate reduced-order representation [1]. Collectively, these applications 

underscore the increasing importance of unsupervised algorithms in improving the 

interpretability and computational tractability of reactive flow simulations. 

2. Clustering 

Unsupervised learning has gained increasing importance in combustion and CFD 

research due to its ability to analyze large and complex datasets without requiring 

labeled information. The growing availability of high-fidelity simulations and 

experimental data has further accelerated its adoption, as traditional analysis tools 

often struggle to capture hidden structures in such high-dimensional spaces. 

Among unsupervised methods, clustering has been widely applied to uncover 

coherent patterns in combustion data by grouping observations with similar thermo-

chemical or fluid-dynamic characteristics. Various approaches have been explored. 

For example, Local Principal Component Analysis (LPCA) has been applied to identify 

low-dimensional manifolds in MILD combustion, enabling efficient chemistry 

tabulation and reduction, and facilitating the interpretation of DNS and LES datasets 

[2,4,5,8]. 

A particularly prominent technique is the k-means algorithm, arguably the most 

widely used clustering routine [9,28,29]. K-means partitions a dataset into user-

defined clusters by minimizing the distance between data points and their centroids, 

thereby assigning each computational cell to a representative state. Prior studies have 

applied k-means to identify soot formation regions in Reactivity Controlled 

Compression Ignition (RCCI) engines or to classify combustion regimes in turbulent 

flames, demonstrating its versatility and effectiveness for combustion applications 

[9,10]. 

As an illustrative example, Savarese et al. presented an application of k-means 

clustering for the automatic generation of Chemical Reactor Networks (CRNs) from 

CFD simulations of a semi-industrial MILD furnace [11]. In their methodology, 

computational cells were grouped according to thermo-chemical variables such as 

temperature, reaction progress, velocity, and residence time, with each cluster 

centroid defining a characteristic reactor state. The outcome was a set of macro-zones 

that exhibit internal homogeneity and can be modeled as perfectly stirred reactors 

within a CRN framework. To address the limitation that k-means does not inherently 

ensure spatial connectivity, the authors introduced a graph-based reassignment 

procedure that guaranteed clusters corresponded to physically contiguous regions. 

The resulting CRNs were then solved using detailed kinetic schemes, achieving 

accurate predictions of pollutant emissions, particularly NO, across different 

methane–hydrogen fuel mixtures. A notable strength of this approach is its ability to 

generalize networks derived from clustering in a single operating condition were 

successfully extrapolated to other conditions while maintaining predictive accuracy. 
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Compared to conventional CFD post-processing and manually designed CRNs, the 

clustering-based framework significantly reduced the need for expert intervention 

and cut computational costs from hours to minutes. 

Taken together, this study demonstrates how unsupervised clustering, and k-means 

in particular, can be embedded into combustion modeling workflows to automate 

the design of reactor networks. By uncovering coherent structures in CFD data and 

translating them into reduced-order models, the method provides a systematic path 

toward efficient, accurate, and interpretable simulations of reactive flows. 

 

Figure 1 - Temporal evolution of the four k-means clusters (fresh gases (FG), preheat (PF), intense 

flame (IF), and burnt gases (BG)) in a longitudinal cut of the bluff-body combustor. The sequence 

illustrates how the intense flame cluster progressively diminish and disappears from the recirculation 

zone, providing a clear marker of global extinction. Figure adapted from [12]. 

A further example of unsupervised clustering in combustion research is provided by 

Lesaffre et al. [12], who investigated lean blow-off (LBO) dynamics in a bluff-body 
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stabilized flame using a combination of Principal Component Analysis (PCA) and k-

means clustering. Their approach began with PCA to reduce the dimensionality of 

high-fidelity LES data, ensuring that the most significant thermo-chemical and flow 

variables were retained. On this reduced dataset, k-means clustering revealed four 

physically distinct zones: fresh gases, burnt gases, preheat region, and intense flame. 

These clusters were not predefined but emerged naturally from the data, 

demonstrating the strength of unsupervised learning for unbiased zone identification. 

Observing the temporal development of the clusters allowed the authors to define 

an extinction criterion, whereby global flame loss is marked by the disappearance of 

the intense flame cluster within the downstream recirculation zone. Figure 1 illustrates 

this process by showing the spatial distribution of the four clusters at successive 

instants in time. It becomes evident that the intense flame region gradually shrinks 

and is replaced by the preheat cluster until complete extinction occurs, whereas 

traditional global metrics such as mean temperature or integrated heat release fail to 

capture this localized event. 

In addition, the clustering results were coupled with balance analyses of mass and 

energy fluxes, which revealed that blow-off was driven primarily by the weakening of 

the balance between chemical heat release and conductive heat flux, while 

convective transport remained nearly unchanged. This combined use of clustering 

and physical analysis offered a new framework to explain how local changes 

propagate to cause global flame extinction, highlighting the value of unsupervised 

learning in understanding complex unsteady combustion phenomena. 

3. Dimensionality Reduction and Feature Extraction 

Unsupervised learning techniques are increasingly being adopted not only for 

clustering but also for dimensionality reduction and feature extraction, which play a 

crucial role in handling the high-dimensional nature of combustion data. Detailed 

CFD simulations often involve hundreds of species and thermo-chemical variables, 

creating datasets that are too large and complex to be directly analyzed or efficiently 

integrated into combustion solvers. Traditional approaches that rely on manually 

selected features may overlook important correlations and tend to be problem-

specific, limiting their general applicability. 

Dimensionality reduction methods such as PCA provide a systematic, data-driven way 

to extract the most informative features while discarding redundancies [6,7]. By 

projecting high-dimensional states onto a lower-dimensional manifold that captures 

the dominant modes of variability, these methods enhance interpretability, reduce 

computational cost, and improve the robustness of subsequent unsupervised 

algorithms such as clustering. 

High-fidelity simulations of reactive flows require detailed chemical kinetics to 

accurately capture species interactions and reaction dynamics. However, 
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incorporating large kinetic mechanisms into multidimensional CFD models is 

computationally expensive, primarily due to the large number of species and the wide 

range of chemical timescales. In operator-splitting CFD solvers, this expense is most 

pronounced during the chemical integration step, where stiff, nonlinear ordinary 

differential equations (ODEs) are solved for each computational cell [13,14]. 

Several strategies have been developed to reduce this cost, including mechanism 

reduction techniques, adaptive chemistry methods, and efficient ODE solvers. 

Among these, Cell Agglomeration (CA) has proven effective by clustering cells with 

similar thermochemical states and performing chemistry calculations at the cluster 

level [15-18]. This reduces the number of ODE integrations while maintaining 

accuracy, and it can be combined with other acceleration techniques for further gains. 

The challenge in CA lies in defining appropriate similarity criteria, traditionally based 

on user-selected thermochemical variables, which requires prior knowledge and 

reduces adaptability. 

To address this limitation, PCA is introduced into the CA framework. PCA provides a 

low-dimensional, uncorrelated representation of the thermochemical state by 

capturing the dominant variance in the data, removing redundancy, and preserving 

key combustion features. More importantly, PCA enables an unsupervised clustering 

process, since the extracted principal components do not depend on user-chosen 

thermochemical variables but are learned directly from the data. This unsupervised 

nature increases automation, reduces reliance on case-specific expert knowledge, 

and allows the method to generalize across different combustion configurations. In 

other words, PCA transforms CA into a more data-driven and adaptive clustering 

framework rather than one constrained by manually pre-selected features. 

In this study [23], the conventional CA method and the PCA-enhanced CA approach 

are implemented within a turbulent combustion solver and evaluated in two 

benchmark configurations of the Adelaide Jet in Hot Coflow (AJHC) burner: (i) 

Reynolds-Averaged Navier-Stokes (RANS) simulation of an n-heptane flame, and (ii) 

LES of an equimolar methane-hydrogen flame [19,20]. 

The evaluation of these two benchmark cases highlights both the accuracy and 

efficiency of the proposed approach. For the n-heptane flame in the RANS 

framework, CA and CA-PCA can reproduce the reference temperature and major 

species profiles with good agreement, showing only minor deviations in OH. Figure 

2 shows that both methods reproduce the reference temperature, OH, and n-C7H16 

profiles well, with only slight deviations in OH. Accuracy is also quantified using the 

normalized RMSD [21,22]: 

𝜖(𝜉) = 1𝜉!"# '
∑ )𝜉$%& −	𝜉$'!(,)*!"##$
$ 𝑁+",,-  
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where 𝜉$%& and 𝜉$'!( denote CA and detailed results, respectively. The quantitative 

error analysis shown in Table 1 confirms that the PCA-based clustering maintains 

acceptable accuracy, with errors arising mainly from variance truncation. Importantly, 

the use of PCA leads to a substantial gain in efficiency, while conventional CA reduces 

the overall runtime by more than 70%, the PCA-based method pushes this value 

beyond 80% with negligible overhead. 

 

Figure 2 - Axial profiles of temperature, OH, and n-C7H16 at 4.9D and 12.9D for the n-heptane flame. 

Figure adapted from [23]. 

Table 1 – Normalized RMSD between the original and CA simulations for the n-heptane flame. 

𝝃 CA (%) CA-PCA (%) 

T 0.0572 0.0650 

OH 0.1776 0.2197 

CO 0.1634 0.2015 

CO2 0.04456 0.04566 

H2O 0.07120 0.06923 

O2 0.03465 0.04441 

n-C7H16 0.05425 0.05788 

 

In the methane–hydrogen flame LES, both approaches capture the mean and RMS 

distributions of temperature and key species with high fidelity, as demonstrated in 

Figure 3 in terms of temperature, OH, and CO distributions along axial profiles. RMSD 

values remain below 0.6% across all scalars, as shown in Table 2, and the PCA-

enhanced method exhibits marginal improvements for OH and CO. Although PCA 

introduces a modest overhead in this more complex configuration, the overall 

acceleration remains significant, and the method proves scalable through strategies 

such as reducing update frequency or limiting sampling. The CA reduces total time 
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by 64.21% (87.15% chemistry), while CA-PCA achieves 60.10% (84.59% chemistry) 

with a 6.45% PCA cost. Overhead can be lowered via less frequent PCA updates or 

sampling fewer cells, making CA-PCA scalable for high-fidelity LES. 

 
Figure 3 – Axial profiles of temperature, OH, and CO at 6.5D and 26D for the CH4/H2 flame. Figure 

adapted from [23]. 

Taken together, these results demonstrate that unsupervised algorithm integration 

through PCA not only preserves the accuracy of cell agglomeration but also enhances 

its adaptability and robustness across different combustion regimes by reducing the 

need for empirical tuning, while achieving a significant computational speedup. The 

method generalizes well beyond case-specific variable selection and offers a scalable 

pathway for accelerating chemistry in high-fidelity CFD simulations. 

Table 2 – Normalized RMSD between detailed and CA simulations of the CH4/H2 flame. 

𝝃 CA (%) CA-PCA (%) 

T 0.5487 0.5107 

OH 0.5209 0.4939 

CO 0.4796 0.4434 

CO2 0.5413 0.5067 

H2O 0.4625 0.4315 

O2 0.2429 0.2424 

 

Another related study by Rovira et al. [24] proposed an unsupervised workflow for 

extracting key features from high-dimensional reactive flow datasets. Their 

methodology consisted of three steps: dimensionality reduction, unsupervised 

clustering, and feature correlation. In the first step, two modern dimensionality 

reduction algorithms were applied. The first is t-distributed Stochastic Neighbor 

Embedding (t-SNE), a nonlinear method that maps high-dimensional data into a low-
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dimensional space by preserving local similarities between points. The second is 

Uniform Manifold Approximation and Projection (UMAP), which is also nonlinear but 

has stronger mathematical foundations, preserves both local and global structures, 

and is computationally more efficient. 

For clustering, the study compared the classical k-means algorithm with Hierarchical 

Density-Based Spatial Clustering of Applications with Noise (HDBSCAN). Unlike k-

means, which requires the number of clusters to be defined in advance and assumes 

spherical cluster shapes, HDBSCAN automatically determines the number of clusters, 

can detect arbitrarily shaped groups, and identifies noise points as outliers. In the 

final step, feature correlation analysis was carried out using mutual information, which 

identifies nonlinear dependencies and links each cluster to the most relevant 

thermochemical variables. 

The evaluation on a counterflow reactor dataset demonstrated that both t-SNE and 

UMAP captured the main physical regions of the flow, including inlets, fast reaction 

zones, and slow reaction regions. However, UMAP offered several advantages: it 

preserved both local and global structures more effectively, produced tighter and 

more compact embeddings that improved clustering quality, and achieved up to 65–

75% faster runtimes compared to t-SNE, particularly for larger meshes. In addition, 

UMAP embeddings enabled HDBSCAN to identify non-spherical clusters and 

correctly classify outliers, which t-SNE failed to separate reliably. 

The effectiveness of this workflow is illustrated in Figure 4, which compares the two-

dimensional embeddings produced by t-SNE and UMAP along with the 

corresponding clusters detected by HDBSCAN. While both methods distinguish the 

main regions, UMAP additionally identifies a distinct mixing zone beneath the jet 

nozzle and provides a clearer separation of outlier points, resulting in more physically 

meaningful clusters when mapped back to the reactor geometry. Finally, feature 

correlation analysis revealed the thermochemical variables most responsible for each 

cluster. For example, ozone concentration and velocity gradients were dominant in 

the fast reaction region, whereas N2O5 concentrations characterized the slow 

downstream regime. This step provided interpretability by linking the abstract 

clusters to physically relevant flow structures. 
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Figure 4 – Comparison of the region identification capabilities of t-SNE (left) and UMAP (right) when 

paired with the HDBSCAN clustering algorithm. The top row shows the two-dimensional mapping 

colored by the clusters found by HDBSCAN. It should be noted that the x and y axes have no labels 

as the exact values of the synthetic variables, which both t-SNE and UMAP reduce to have no 

intrinsic value. Hence, what is compared here are the shapes, distribution, and distances between 

clusters. The bottom row presents the location of the clusters within the reactor geometry. Figure 

adapted from [24]. 

The use of a combination of dimensionality reduction and clustering techniques was 

also investigated to identify precursors of intermittent hydrogen flashback [25], which 

were observed in LES of a reheat hydrogen combustor. In that work, a variant of PCA, 

called Co-Kurtosis PCA, was used to identify the thermochemical and hydrodynamic 

features which were most relevant in the onset of flashback. Then, from those identify 

features, modularity-based clustering was used to determine the specific combination 

of features acting as precursor to hydrogen flashback. Compared to previously 

mentioned clustering techniques, modularity-based clustering relies on a graph-

interpretation of the evolution of the features, where nodes correspond to specific 

regions of the feature space and the edges represent the probability of transitioning 

between those regions. Modularity-based clustering then identifies clusters of nodes 

which have a strong intra-connectivity and weak extra-connectivity, resulting in 

isolated clusters of flashbacking states, clusters of normal states, and the precursors 

clusters which link these two groups of clusters. Relying on those precursors clusters, 

a warning system could be devised which warns of an impending flashback, as 

illustrated in Figure 5. 



   

 12 

 

Figure 5 – Evolution of temperature during several flashback events. Background colors indicate the 

state the burner is identified to be in. Normal: blue, Precursor: orange and flashbacking: red. On 

average, the precursors provide ~34 µs of warning. Figure adapted from [25]. 

To conclude, the results of these studies [24,25] highlight that a combination of 

dimensionality reduction with clustering (UMAP with HDBSCAN or co-kurtosis PCA 

with modularity clustering) offer a robust and efficient unsupervised workflow. 

Compared with more traditional approaches such as PCA and k-means, these 

frameworks improve accuracy, scalability, and physical interpretability in the analysis 

of high-dimensional combustion data. 

4. Adaptive Local Model Selection 

Adaptive local model selection addresses the challenge of efficiently integrating 

detailed chemical kinetics into large-scale turbulent combustion simulations. In 

operator-splitting CFD solvers, the chemical step dominates the computational cost 

because each cell requires the integration of stiff nonlinear ODE systems involving 

many species. However, not all species or reactions are equally important in every 

region of the flame. Depending on the local thermo-chemical state, certain subsets 

of the mechanism may be inactive or redundant. This motivates a strategy in which 

different regions of the state space are associated with different reduced models, and 

the most suitable one is selected dynamically during runtime. 

Traditional adaptive chemistry approaches, such as dynamic on-the-fly reduction, are 

limited by their high computational overhead, particularly when applied to large 

mechanisms or LES with millions of cells [26,27]. Pre-partitioning adaptive chemistry 

(PPAC) reduces this burden by constructing a library of reduced mechanisms 

beforehand, but its effectiveness strongly depends on how the training dataset is 

partitioned [28,29]. If the partitioning is not representative of the underlying 

dynamics, reduced mechanisms may become oversized or inaccurate, compromising 

both efficiency and reliability. Therefore, an automated and data-driven partitioning 

and classification strategy is essential. 

In this context, Amaduzzi et al. proposed the Sample-Partitioning Adaptive Chemistry 

(SPARC) framework, which integrates unsupervised learning into both the clustering 

and classification stages [22]. First, the training dataset of one-dimensional flamelets 

is partitioned using LPCA. Unlike conventional clustering methods such as k-means 

or self-organizing maps, LPCA minimizes PCA reconstruction error and adapts the 
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dimensionality of local manifolds, producing clusters that better capture the chemical 

variability of reacting flow data. Moreover, the number of clusters and local principal 

components are not fixed manually but optimized automatically using Bayesian 

optimization, thereby reducing reliance on expert intervention. 

 

Figure 6 – Comparison of resolved mean and RMS of temperature of the detailed and SPARC LES. 

Figure adapted from [22]. 

During runtime, each computational cell is classified into one of the pre-computed 

clusters by the Vector Quantization Principal Component Analysis (VQPCA) algorithm 

[1]. This unsupervised classifier assigns each state to the cluster that yields the 

smallest reconstruction error, ensuring that the most appropriate reduced mechanism 

is selected at every timestep. The rationale for choosing VQPCA lies in its balance 

between accuracy and computational cost. It avoids heuristic similarity metrics or 

hand-crafted thresholds, while its reconstruction-error-based assignment directly 

reflects the quality of representation by each cluster. 

The application to the AJHC flame demonstrated the benefits of this approach. 

Figure 6 illustrates this performance for temperature profiles, comparing mean and 

RMS values along radial and axial lines. The SPARC simulation with VQPCA closely 

follows the detailed LES, with no significant deviations observed across the flame. 

Similarly, Figure 7 indicates the comparison for OH and CO, two critical intermediate 

species in MILD combustion regimes. The adaptive approach captures both mean 

values and fluctuations with good fidelity, although minor discrepancies appear in the 

downstream region for OH. Importantly, these differences remain within the 
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experimental uncertainty range and do not compromise the overall predictive 

accuracy. Together, these figures highlight that VQPCA-based adaptive model 

selection enables substantial computational savings while maintaining detailed-level 

agreement in both global scalars (temperature) and sensitive intermediates (OH and 

CO). 

 

Figure 7 – Comparison of resolved mean and RMS of OH and CO mass fractions of the detailed and 

SPARC LES. Figure adapted from [22]. 

Additionally, quantitative results demonstrated that the adaptive method maintained 

accuracy, with normalized RMS deviations of less than 1.5% for temperature and 

major species compared to detailed LES, while reducing the average number of 

species per integration step from 36 to 24. This translated into a 2.2× speedup of the 

chemical integration. 

Further insight into the role of adaptive local model selection is provided in Figure 8, 

which shows the instantaneous cluster assignment across the computational domain. 

The classifier clearly captures the three-stream mixing structure of the AJHC burner, 

with chemically complex regions assigned to larger skeletal mechanisms (up to 35 

species) and diluted regions described with significantly reduced models (as low as 

20 species). This spatial organization confirms that VQPCA not only reduces 

computational cost but also provides a physically consistent mapping of local 

chemical complexity. In particular, the algorithm identifies zones of intense 

turbulence–chemistry interaction, such as the air–fuel–coflow mixing layers, where 

more detailed models are required for accurate predictions. 
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Together, these results highlight how VQPCA-based adaptive model selection 

provides a scalable and automated way to accelerate chemistry while preserving 

detailed-level fidelity. Results demonstrate that the approach not only reproduces 

global flame characteristics but also adapts locally to the chemical activity of each 

region, ensuring both efficiency and accuracy in LES of turbulent combustion. 

 

Figure 8 – Instantaneous 2D slice of the SPARC simulation, contours of the cluster number of species 

(left, colored) and instantaneous temperature (right, greyscale). Figure adapted from [22]. 

Overall, the adoption of VQPCA for adaptive local model selection reflects a broader 

motivation, to achieve robust, automated, and generalizable chemistry acceleration 

without extensive user tuning. By directly leveraging unsupervised learning, the 

method reduces computational cost while maintaining predictive fidelity, making 

high-fidelity LES with detailed kinetics feasible for more complex combustion 

systems. 

5. Conclusion 

This report has reviewed the integration of unsupervised learning techniques into 

computational fluid dynamics for reactive flow simulations, focusing on their role in 

clustering, dimensionality reduction, and adaptive model selection. The findings 

emphasize that unsupervised algorithms provide a systematic and data-driven 

approach to extract meaningful patterns from high-dimensional combustion data, 

enabling both computational acceleration and improved interpretability. 
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Clustering approaches such as k-means, LPCA, HDBSCAN and modularity clustering 

have proven effective for identifying coherent structures and physically important 

features, and automating the generation of chemical reactor networks, reducing the 

dependence on expert intervention while maintaining predictive accuracy. 

Dimensionality reduction methods, including PCA, co-kurtosis PCA and more recent 

nonlinear techniques like UMAP, have demonstrated their ability to reveal low-

dimensional manifolds and support scalable clustering and feature analysis. Adaptive 

model selection strategies based on unsupervised classification, such as the use of 

VQPCA within SPARC, show particular promise by dynamically reducing chemical 

complexity while preserving fidelity in large-scale simulations. 

Despite these advances, challenges remain regarding the sensitivity of results to 

algorithmic choices, hyperparameters, and similarity definitions, which can limit 

generalization across combustion regimes. Dimensionality reduction also introduces 

trade-offs, as variance truncation may reduce accuracy, while the interpretability of 

nonlinear embeddings remains a concern when applied to turbulent flow–chemistry 

interactions. 

Looking ahead, several opportunities exist for further development. Hybrid learning 

strategies that combine unsupervised methods with physics-based constraints can 

help ensure consistency and interpretability. The design of scalable algorithms 

tailored to massive CFD datasets will be necessary to extend applicability to 

industrially relevant systems. Advances in representation learning, including self-

supervised approaches, may uncover richer latent structures and improve adaptability 

across operating conditions. Embedding conservation laws and thermochemical 

constraints into unsupervised frameworks can also increase their physical reliability. 

In conclusion, unsupervised learning represents a promising direction for the next 

generation of CFD frameworks. By integrating data-driven insights with physical 

modeling, these methods have the potential to achieve simulations that are not only 

faster and more efficient but also more adaptive and interpretable, paving the way 

for high-fidelity combustion modeling in increasingly complex applications. 
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