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1. Introduction

Computational Fluid Dynamics (CFD) has become a cornerstone of modemn
engineering, enabling the detailed analysis of fluid behavior for applications ranging
from aerodynamics and propulsion to energy systems. Its value lies in the ability to
provide predictive insights that guide design, optimization, and performance
assessment without relying solely on costly experiments. However, when applied to
reactive flows, CFD simulations encounter significant challenges. The need to account
for multiple chemical species, complex reaction kinetics, and their tight coupling with
turbulent mixing makes these simulations highly demanding in terms of both accuracy
and computational cost. Approaches such as Large Eddy Simulation (LES) offer a
practical compromise by resolving large-scale turbulent structures while modeling the
impact of unresolved, small-scale dynamics. While methods like LES highlight the
essential role of CFD in capturing complex flow—chemistry interactions, current
approaches remain computationally intensive and leave room for further
development and improvement. Furthermore, LES, and CFD in general, result in very
large dataset given the spatial resolutions required, making it challenging to elucidate
the key relevant physical phenomena contained therein.

Such limitations motivate the development of approaches that can extract essential
patterns from large, complex datasets while reducing computational demands. In this
context, unsupervised algorithms provide a versatile set of tools for addressing the
challenges of high-dimensional CFD data. Clustering methods enable the automatic
grouping of similar flow states and the identification of coherent structures [1-4], while
dimensionality reduction and feature extraction techniques allow for compact yet
informative representations of complex flow fields [4,5]. Building on these
capabilities, adaptive model simplification strategies can leverage unsupervised
insights to dynamically refine or select models based on local flow characteristics [5,6].
Together, these algorithms offer a systematic framework for improving the efficiency
and interpretability of reactive flow simulations, supporting both reduced
computational cost and enhanced physical fidelity in CFD analyses.

In the literature, various unsupervised algorithms have been applied to the analysis
of CFD data. Clustering methods such as k-means have been utilized to classify flow
states and identify coherent structures, while Local Principal Component Analysis
(LPCA) has enabled the capture of localized variability in heterogeneous, multi-scale
flows [1,3]. For dimensionality reduction and feature extraction, techniques like
Principal Component Analysis (PCA) and Proper Orthogonal Decomposition (POD)
are widely adopted to obtain compact yet physically meaningful representations of
high-dimensional flow fields, reducing computational cost while retaining key
dynamics [6,7]. In addition, methods such as Vector Quantization Principal
Component Analysis (VQPCA) provide a classification-based framework for adaptive
local model selection, in which different flow regions are dynamically assigned to the
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most appropriate reduced-order representation [1]. Collectively, these applications
underscore the increasing importance of unsupervised algorithms in improving the
interpretability and computational tractability of reactive flow simulations.

2. Clustering

Unsupervised learning has gained increasing importance in combustion and CFD
research due to its ability to analyze large and complex datasets without requiring
labeled information. The growing availability of high-fidelity simulations and
experimental data has further accelerated its adoption, as traditional analysis tools
often struggle to capture hidden structures in such high-dimensional spaces.

Among unsupervised methods, clustering has been widely applied to uncover
coherent patterns in combustion data by grouping observations with similar thermo-
chemical or fluid-dynamic characteristics. Various approaches have been explored.
For example, Local Principal Component Analysis (LPCA) has been applied to identify
low-dimensional manifolds in MILD combustion, enabling efficient chemistry
tabulation and reduction, and facilitating the interpretation of DNS and LES datasets
[2,4,5,8].

A particularly prominent technique is the k-means algorithm, arguably the most
widely used clustering routine [9,28,29]. K-means partitions a dataset into user-
defined clusters by minimizing the distance between data points and their centroids,
thereby assigning each computational cell to a representative state. Prior studies have
applied k-means to identify soot formation regions in Reactivity Controlled
Compression Ignition (RCCI) engines or to classify combustion regimes in turbulent
flames, demonstrating its versatility and effectiveness for combustion applications
[9,10].

As an illustrative example, Savarese et al. presented an application of k-means
clustering for the automatic generation of Chemical Reactor Networks (CRNs) from
CFD simulations of a semi-industrial MILD furnace [11]. In their methodology,
computational cells were grouped according to thermo-chemical variables such as
temperature, reaction progress, velocity, and residence time, with each cluster
centroid defining a characteristic reactor state. The outcome was a set of macro-zones
that exhibit internal homogeneity and can be modeled as perfectly stirred reactors
within a CRN framework. To address the limitation that k-means does not inherently
ensure spatial connectivity, the authors introduced a graph-based reassignment
procedure that guaranteed clusters corresponded to physically contiguous regions.

The resulting CRNs were then solved using detailed kinetic schemes, achieving
accurate predictions of pollutant emissions, particularly NO, across different
methane-hydrogen fuel mixtures. A notable strength of this approach is its ability to
generalize networks derived from clustering in a single operating condition were
successfully extrapolated to other conditions while maintaining predictive accuracy.
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Compared to conventional CFD post-processing and manually designed CRNs, the
clustering-based framework significantly reduced the need for expert intervention
and cut computational costs from hours to minutes.

Taken together, this study demonstrates how unsupervised clustering, and k-means
in particular, can be embedded into combustion modeling workflows to automate
the design of reactor networks. By uncovering coherent structures in CFD data and
translating them into reduced-order models, the method provides a systematic path
toward efficient, accurate, and interpretable simulations of reactive flows.
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Figure 1 - Temporal evolution of the four k-means clusters (fresh gases (FG), preheat (PF), intense
flame (IF), and burnt gases (BG)) in a longitudinal cut of the bluff-body combustor. The sequence
illustrates how the intense flame cluster progressively diminish and disappears from the recirculation
zone, providing a clear marker of global extinction. Figure adapted from [12].

A further example of unsupervised clustering in combustion research is provided by
Lesaffre et al. [12], who investigated lean blow-off (LBO) dynamics in a bluff-body
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stabilized flame using a combination of Principal Component Analysis (PCA) and k-
means clustering. Their approach began with PCA to reduce the dimensionality of
high-fidelity LES data, ensuring that the most significant thermo-chemical and flow
variables were retained. On this reduced dataset, k-means clustering revealed four
physically distinct zones: fresh gases, burnt gases, preheat region, and intense flame.
These clusters were not predefined but emerged naturally from the data,
demonstrating the strength of unsupervised learning for unbiased zone identification.

Observing the temporal development of the clusters allowed the authors to define
an extinction criterion, whereby global flame loss is marked by the disappearance of
the intense flame cluster within the downstream recirculation zone. Figure 1 illustrates
this process by showing the spatial distribution of the four clusters at successive
instants in time. It becomes evident that the intense flame region gradually shrinks
and is replaced by the preheat cluster until complete extinction occurs, whereas
traditional global metrics such as mean temperature or integrated heat release fail to
capture this localized event.

In addition, the clustering results were coupled with balance analyses of mass and
energy fluxes, which revealed that blow-off was driven primarily by the weakening of
the balance between chemical heat release and conductive heat flux, while
convective transport remained nearly unchanged. This combined use of clustering
and physical analysis offered a new framework to explain how local changes
propagate to cause global flame extinction, highlighting the value of unsupervised
learning in understanding complex unsteady combustion phenomena.

3. Dimensionality Reduction and Feature Extraction

Unsupervised learning techniques are increasingly being adopted not only for
clustering but also for dimensionality reduction and feature extraction, which play a
crucial role in handling the high-dimensional nature of combustion data. Detailed
CFD simulations often involve hundreds of species and thermo-chemical variables,
creating datasets that are too large and complex to be directly analyzed or efficiently
integrated into combustion solvers. Traditional approaches that rely on manually
selected features may overlook important correlations and tend to be problem-
specific, limiting their general applicability.

Dimensionality reduction methods such as PCA provide a systematic, data-driven way
to extract the most informative features while discarding redundancies [6,7]. By
projecting high-dimensional states onto a lower-dimensional manifold that captures
the dominant modes of variability, these methods enhance interpretability, reduce
computational cost, and improve the robustness of subsequent unsupervised
algorithms such as clustering.

High-fidelity simulations of reactive flows require detailed chemical kinetics to
accurately capture species interactions and reaction dynamics. However,
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incorporating large kinetic mechanisms into multidimensional CFD models is
computationally expensive, primarily due to the large number of species and the wide
range of chemical timescales. In operator-splitting CFD solvers, this expense is most
pronounced during the chemical integration step, where stiff, nonlinear ordinary
differential equations (ODEs) are solved for each computational cell [13,14].

Several strategies have been developed to reduce this cost, including mechanism
reduction techniques, adaptive chemistry methods, and efficient ODE solvers.
Among these, Cell Agglomeration (CA) has proven effective by clustering cells with
similar thermochemical states and performing chemistry calculations at the cluster
level [15-18]. This reduces the number of ODE integrations while maintaining
accuracy, and it can be combined with other acceleration techniques for further gains.
The challenge in CA lies in defining appropriate similarity criteria, traditionally based
on user-selected thermochemical variables, which requires prior knowledge and
reduces adaptability.

To address this limitation, PCA is introduced into the CA framework. PCA provides a
low-dimensional, uncorrelated representation of the thermochemical state by
capturing the dominant variance in the data, removing redundancy, and preserving
key combustion features. More importantly, PCA enables an unsupervised clustering
process, since the extracted principal components do not depend on user-chosen
thermochemical variables but are learned directly from the data. This unsupervised
nature increases automation, reduces reliance on case-specific expert knowledge,
and allows the method to generalize across different combustion configurations. In
other words, PCA transforms CA into a more data-driven and adaptive clustering
framework rather than one constrained by manually pre-selected features.

In this study [23], the conventional CA method and the PCA-enhanced CA approach
are implemented within a turbulent combustion solver and evaluated in two
benchmark configurations of the Adelaide Jet in Hot Coflow (AJHC) burer: (i)
Reynolds-Averaged Navier-Stokes (RANS) simulation of an n-heptane flame, and (ii)
LES of an equimolar methane-hydrogen flame [19,20].

The evaluation of these two benchmark cases highlights both the accuracy and
efficiency of the proposed approach. For the n-heptane flame in the RANS
framework, CA and CA-PCA can reproduce the reference temperature and major
species profiles with good agreement, showing only minor deviations in OH. Figure
2 shows that both methods reproduce the reference temperature, OH, and n-C;H1s
profiles well, with only slight deviations in OH. Accuracy is also quantified using the
normalized RMSD [21,22]:
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where &4 and &9 denote CA and detailed results, respectively. The quantitative
error analysis shown in Table 1 confirms that the PCA-based clustering maintains
acceptable accuracy, with errors arising mainly from variance truncation. Importantly,
the use of PCA leads to a substantial gain in efficiency, while conventional CA reduces
the overall runtime by more than 70%, the PCA-based method pushes this value

beyond 80% with negligible overhead.
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Figure 2 - Axial profiles of temperature, OH, and n-C;H1 at 4.9D and 12.9D for the n-heptane flame.
Figure adapted from [23].

Table 1 - Normalized RMSD between the original and CA simulations for the n-heptane flame.

¢ CA (%) CA-PCA (%)
T 0.0572 0.0650
OH 0.1776 0.2197
CcO 0.1634 0.2015
CO2 0.04456 0.04566
H20 0.07120 0.06923
O 0.03465 0.04441
n-C7H1e 0.05425 0.05788

In the methane-hydrogen flame LES, both approaches capture the mean and RMS
distributions of temperature and key species with high fidelity, as demonstrated in
Figure 3 in terms of temperature, OH, and CO distributions along axial profiles. RMSD
values remain below 0.6% across all scalars, as shown in Table 2, and the PCA-
enhanced method exhibits marginal improvements for OH and CO. Although PCA
introduces a modest overhead in this more complex configuration, the overall
acceleration remains significant, and the method proves scalable through strategies
such as reducing update frequency or limiting sampling. The CA reduces total time
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by 64.21% (87.15% chemistry), while CA-PCA achieves 60.10% (84.59% chemistry)
with a 6.45% PCA cost. Overhead can be lowered via less frequent PCA updates or

sampling fewer cells, making CA-PCA scalable for high-fidelity LES.
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Figure 3 — Axial profiles of temperature, OH, and CO at 6.5D and 26D for the CH4/H. flame. Figure
adapted from [23].

Taken together, these results demonstrate that unsupervised algorithm integration
through PCA not only preserves the accuracy of cell agglomeration but also enhances
its adaptability and robustness across different combustion regimes by reducing the
need for empirical tuning, while achieving a significant computational speedup. The
method generalizes well beyond case-specific variable selection and offers a scalable
pathway for accelerating chemistry in high-fidelity CFD simulations.

Table 2 — Normalized RMSD between detailed and CA simulations of the CH4/H, flame.

¢ CA (%) CA-PCA (%)

T 0.5487 0.5107
OH 0.5209 0.4939
CcO 0.4796 0.4434
CO2 0.5413 0.5067
H20 0.4625 0.4315
O 0.2429 0.2424

Another related study by Rovira et al. [24] proposed an unsupervised workflow for
extracting key features from high-dimensional reactive flow datasets. Their
methodology consisted of three steps: dimensionality reduction, unsupervised
clustering, and feature correlation. In the first step, two modern dimensionality
reduction algorithms were applied. The first is t-distributed Stochastic Neighbor
Embedding (t-SNE), a nonlinear method that maps high-dimensional data into a low-

9
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dimensional space by preserving local similarities between points. The second is
Uniform Manifold Approximation and Projection (UMAP), which is also nonlinear but
has stronger mathematical foundations, preserves both local and global structures,
and is computationally more efficient.

For clustering, the study compared the classical k-means algorithm with Hierarchical
Density-Based Spatial Clustering of Applications with Noise (HDBSCAN). Unlike k-
means, which requires the number of clusters to be defined in advance and assumes
spherical cluster shapes, HDBSCAN automatically determines the number of clusters,
can detect arbitrarily shaped groups, and identifies noise points as outliers. In the
final step, feature correlation analysis was carried out using mutual information, which
identifies nonlinear dependencies and links each cluster to the most relevant
thermochemical variables.

The evaluation on a counterflow reactor dataset demonstrated that both t-SNE and
UMAP captured the main physical regions of the flow, including inlets, fast reaction
zones, and slow reaction regions. However, UMAP offered several advantages: it
preserved both local and global structures more effectively, produced tighter and
more compact embeddings that improved clustering quality, and achieved up to 65—
75% faster runtimes compared to t-SNE, particularly for larger meshes. In addition,
UMAP embeddings enabled HDBSCAN to identify non-spherical clusters and
correctly classify outliers, which t-SNE failed to separate reliably.

The effectiveness of this workflow is illustrated in Figure 4, which compares the two-
dimensional embeddings produced by t-SNE and UMAP along with the
corresponding clusters detected by HDBSCAN. While both methods distinguish the
main regions, UMAP additionally identifies a distinct mixing zone beneath the jet
nozzle and provides a clearer separation of outlier points, resulting in more physically
meaningful clusters when mapped back to the reactor geometry. Finally, feature
correlation analysis revealed the thermochemical variables most responsible for each
cluster. For example, ozone concentration and velocity gradients were dominant in
the fast reaction region, whereas N.Os concentrations characterized the slow
downstream regime. This step provided interpretability by linking the abstract
clusters to physically relevant flow structures.

10
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Figure 4 — Comparison of the region identification capabilities of t-SNE (left) and UMAP (right) when
paired with the HDBSCAN clustering algorithm. The top row shows the two-dimensional mapping
colored by the clusters found by HDBSCAN. It should be noted that the x and y axes have no labels
as the exact values of the synthetic variables, which both t-SNE and UMAP reduce to have no
intrinsic value. Hence, what is compared here are the shapes, distribution, and distances between
clusters. The bottom row presents the location of the clusters within the reactor geometry. Figure
adapted from [24].

The use of a combination of dimensionality reduction and clustering techniques was
also investigated to identify precursors of intermittent hydrogen flashback [25], which
were observed in LES of a reheat hydrogen combustor. In that work, a variant of PCA,
called Co-Kurtosis PCA, was used to identify the thermochemical and hydrodynamic
features which were most relevant in the onset of flashback. Then, from those identify
features, modularity-based clustering was used to determine the specific combination
of features acting as precursor to hydrogen flashback. Compared to previously
mentioned clustering techniques, modularity-based clustering relies on a graph-
interpretation of the evolution of the features, where nodes correspond to specific
regions of the feature space and the edges represent the probability of transitioning
between those regions. Modularity-based clustering then identifies clusters of nodes
which have a strong intra-connectivity and weak extra-connectivity, resulting in
isolated clusters of flashbacking states, clusters of normal states, and the precursors
clusters which link these two groups of clusters. Relying on those precursors clusters,
a warning system could be devised which warns of an impending flashback, as
illustrated in Figure 5.

11
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Figure 5 — Evolution of temperature during several flashback events. Background colors indicate the
state the burner is identified to be in. Normal: blue, Precursor: orange and flashbacking: red. On
average, the precursors provide ~34 ps of warning. Figure adapted from [25].

To conclude, the results of these studies [24,25] highlight that a combination of
dimensionality reduction with clustering (UMAP with HDBSCAN or co-kurtosis PCA
with modularity clustering) offer a robust and efficient unsupervised workflow.
Compared with more traditional approaches such as PCA and k-means, these
frameworks improve accuracy, scalability, and physical interpretability in the analysis
of high-dimensional combustion data.

4. Adaptive Local Model Selection

Adaptive local model selection addresses the challenge of efficiently integrating
detailed chemical kinetics into large-scale turbulent combustion simulations. In
operator-splitting CFD solvers, the chemical step dominates the computational cost
because each cell requires the integration of stiff nonlinear ODE systems involving
many species. However, not all species or reactions are equally important in every
region of the flame. Depending on the local thermo-chemical state, certain subsets
of the mechanism may be inactive or redundant. This motivates a strategy in which
different regions of the state space are associated with different reduced models, and
the most suitable one is selected dynamically during runtime.

Traditional adaptive chemistry approaches, such as dynamic on-the-fly reduction, are
limited by their high computational overhead, particularly when applied to large
mechanisms or LES with millions of cells [26,27]. Pre-partitioning adaptive chemistry
(PPAC) reduces this burden by constructing a library of reduced mechanisms
beforehand, but its effectiveness strongly depends on how the training dataset is
partitioned [28,29]. If the partitioning is not representative of the underlying
dynamics, reduced mechanisms may become oversized or inaccurate, compromising
both efficiency and reliability. Therefore, an automated and data-driven partitioning
and classification strategy is essential.

In this context, Amaduzzi et al. proposed the Sample-Partitioning Adaptive Chemistry
(SPARC) framework, which integrates unsupervised learning into both the clustering
and classification stages [22]. First, the training dataset of one-dimensional flamelets
is partitioned using LPCA. Unlike conventional clustering methods such as k-means
or self-organizing maps, LPCA minimizes PCA reconstruction error and adapts the

12
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dimensionality of local manifolds, producing clusters that better capture the chemical
variability of reacting flow data. Moreover, the number of clusters and local principal
components are not fixed manually but optimized automatically using Bayesian
optimization, thereby reducing reliance on expert intervention.

Centerline Axial 30 mm
1500 1500 +
— 1000 4 — 1000 —
=) =)
— -
500 + 500 +
____________________ ™\ N
T T T T T
0.06 0.12 0.18 0.00 0.02 0.04 0.06
Axial direction [m] r [m]
Axial 60 mm Axial 120 mm
1500 + 1500 —
— 1000 - — 1000
= = i
= =
500 A 500
- e ____/’\\\ - ____—//\§‘\\
T T 1 T T — T
0.00 0.02 0.04 0.06 0.00 0.02 0.04 0.06
r [m] r [m]
Detailed Mean SPARC Mean Detailed RMS SPARC RMS

Figure 6 — Comparison of resolved mean and RMS of temperature of the detailed and SPARC LES.
Figure adapted from [22].

During runtime, each computational cell is classified into one of the pre-computed
clusters by the Vector Quantization Principal Component Analysis (VQPCA) algorithm
[1]. This unsupervised classifier assigns each state to the cluster that yields the
smallest reconstruction error, ensuring that the most appropriate reduced mechanism
is selected at every timestep. The rationale for choosing VQPCA lies in its balance
between accuracy and computational cost. It avoids heuristic similarity metrics or
hand-crafted thresholds, while its reconstruction-error-based assignment directly
reflects the quality of representation by each cluster.

The application to the AJHC flame demonstrated the benefits of this approach.
Figure 6 illustrates this performance for temperature profiles, comparing mean and
RMS values along radial and axial lines. The SPARC simulation with VQPCA closely
follows the detailed LES, with no significant deviations observed across the flame.
Similarly, Figure 7 indicates the comparison for OH and CO, two critical intermediate
species in MILD combustion regimes. The adaptive approach captures both mean
values and fluctuations with good fidelity, although minor discrepancies appear in the
downstream region for OH. Importantly, these differences remain within the

13
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experimental uncertainty range and do not compromise the overall predictive
accuracy. Together, these figures highlight that VOQPCA-based adaptive model
selection enables substantial computational savings while maintaining detailed-level
agreement in both global scalars (temperature) and sensitive intermediates (OH and
CO).
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Figure 7 — Comparison of resolved mean and RMS of OH and CO mass fractions of the detailed and
SPARC LES. Figure adapted from [22].

Additionally, quantitative results demonstrated that the adaptive method maintained
accuracy, with normalized RMS deviations of less than 1.5% for temperature and
major species compared to detailed LES, while reducing the average number of
species per integration step from 36 to 24. This translated into a 2.2x speedup of the
chemical integration.

Further insight into the role of adaptive local model selection is provided in Figure 8,
which shows the instantaneous cluster assignment across the computational domain.
The classifier clearly captures the three-stream mixing structure of the AJHC burner,
with chemically complex regions assigned to larger skeletal mechanisms (up to 35
species) and diluted regions described with significantly reduced models (as low as
20 species). This spatial organization confirms that VQPCA not only reduces
computational cost but also provides a physically consistent mapping of local
chemical complexity. In particular, the algorithm identifies zones of intense
turbulence—chemistry interaction, such as the air—fuel-coflow mixing layers, where
more detailed models are required for accurate predictions.

14
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Together, these results highlight how VQPCA-based adaptive model selection
provides a scalable and automated way to accelerate chemistry while preserving
detailed-level fidelity. Results demonstrate that the approach not only reproduces
global flame characteristics but also adapts locally to the chemical activity of each
region, ensuring both efficiency and accuracy in LES of turbulent combustion.
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Figure 8 — Instantaneous 2D slice of the SPARC simulation, contours of the cluster number of species
(left, colored) and instantaneous temperature (right, greyscale). Figure adapted from [22].

Overall, the adoption of VOPCA for adaptive local model selection reflects a broader
motivation, to achieve robust, automated, and generalizable chemistry acceleration
without extensive user tuning. By directly leveraging unsupervised learning, the
method reduces computational cost while maintaining predictive fidelity, making
high-fidelity LES with detailed kinetics feasible for more complex combustion
systems.

5. Conclusion

This report has reviewed the integration of unsupervised learing techniques into
computational fluid dynamics for reactive flow simulations, focusing on their role in
clustering, dimensionality reduction, and adaptive model selection. The findings
emphasize that unsupervised algorithms provide a systematic and data-driven
approach to extract meaningful patterns from high-dimensional combustion data,
enabling both computational acceleration and improved interpretability.

15
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Clustering approaches such as k-means, LPCA, HDBSCAN and modularity clustering
have proven effective for identifying coherent structures and physically important
features, and automating the generation of chemical reactor networks, reducing the
dependence on expert intervention while maintaining predictive accuracy.
Dimensionality reduction methods, including PCA, co-kurtosis PCA and more recent
nonlinear techniques like UMAP, have demonstrated their ability to reveal low-
dimensional manifolds and support scalable clustering and feature analysis. Adaptive
model selection strategies based on unsupervised classification, such as the use of
VQPCA within SPARC, show particular promise by dynamically reducing chemical
complexity while preserving fidelity in large-scale simulations.

Despite these advances, challenges remain regarding the sensitivity of results to
algorithmic choices, hyperparameters, and similarity definitions, which can limit
generalization across combustion regimes. Dimensionality reduction also introduces
trade-offs, as variance truncation may reduce accuracy, while the interpretability of
nonlinear embeddings remains a concern when applied to turbulent flow—chemistry
interactions.

Looking ahead, several opportunities exist for further development. Hybrid learning
strategies that combine unsupervised methods with physics-based constraints can
help ensure consistency and interpretability. The design of scalable algorithms
tailored to massive CFD datasets will be necessary to extend applicability to
industrially relevant systems. Advances in representation learning, including self-
supervised approaches, may uncover richer latent structures and improve adaptability
across operating conditions. Embedding conservation laws and thermochemical
constraints into unsupervised frameworks can also increase their physical reliability.

In conclusion, unsupervised learning represents a promising direction for the next
generation of CFD frameworks. By integrating data-driven insights with physical
modeling, these methods have the potential to achieve simulations that are not only
faster and more efficient but also more adaptive and interpretable, paving the way
for high-fidelity combustion modeling in increasingly complex applications.
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